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1. INTRODUCTION 

Nonlinear wave processes have recently been a subject of increasing interest in various fields of 
physics (optics, plasma physics, radiophysics, and fluid dynamics). The Korteweg-de Vries equation 
is often used as a model equation for the analysis of waves of small but finite amplitude in dispersive 
media; this equation was derived for the first time in [1] by expanding the equations of an ideal 
incompressible fluid in small parameters. A number of important results pertaining to properties of 
the Korteweg-de Vries equation and to finding exact solutions were obtained in [2-4]. An explicit 
three-layer finite-difference scheme [5] with approximation order O (h2+ T 2) was the first scheme 
used for the numerical solution of the Korteweg-de Vries equation. The further development of 
numerical analysis of the Korteweg-de Vries equation resulted in the appearance of finite-difference 
schemes with improved stability and accuracy properties [6-11]. 

In the present paper, we analyze the conservativity and stability of a family of explicit and 
implicit finite-difference schemes for the Korteweg-de Vries equation from the viewpoint of con- 
servation laws. We use the notion of an L2-conservative finite-difference scheme implying the 
validity of a grid analog of the conservation law for the solution [12, 13]. This principle is used 
in the present paper for constructing new classes of three-layer weighted finite-difference schemes. 
We obtain a priori estimates for the solution of finite-difference problems in the nonlinear case. 

2. STATEMENT OF THE PROBLEM 

The Korteweg-de Vries equation 

Ou/Ot + u Ou/Ox + ~Oau/Ox 3 = O, ~ = const > 0, (1) 

which was derived for the problem on long waves in shallow water [1], is the simplest model equation 
for the analysis of the evolution of waves of small amplitude in a dispersive medium. 

In the rectangular domain (~ = {(x, t) : 0 < x < l, 0 < t < T}, we consider the Cauchy problem 
for Eq. (1) with the spatially periodic conditions 

u(x, 0) = u0(x), 0 < x < l, (2) 
~(x,t)  = ~(x + l,t), t _> o. (3) 

3. THE BASIC PROPERTIES OF THE PROBLEM 

When constructing a family of finite-difference schemes effectively approximating a differential 
problem, one must provide the validity of grid analogs of the conservation laws. 

L e m m a  1 [14, p. 221]. Let condition (3) be satisfied. Then the nonlinear operator 

Lu = Llu + ~L2u, 

satisfies the relations 

LlU =-- uOu/Ox, L2u = 03u/Ox 3, (4) 

l 

(Lku, u )=O,  k =  1,2; (Lu, u) =0 ,  (u,v) = f u(x , t )v(x , t )dx .  (5) 
o 
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When constructing conservative and completely conservative finite-difference schemes [10], it is 
important to know integral characteristics of the differential problem that do not change in the 
course of time. 

L e m m a  2. For the solut ion of  problem (1)-(3), one has the conservat ion laws 

E l ( t )  = El(O),  E l ( t )  = / u ( x , t ) d x ,  (6) 
0 

I 

E2(t)  = E2(O), E2( t )  = / u 2 ( x , t ) d x .  (7) 
0 

Proof .  Relation (6) is obvious. To derive relation (7), we take the inner product of Eq. (1) by 
2u and use the periodicity condition (3). We obtain the identity d E 2 ( t ) / d t  = 0; by integrating it 
with respect to t, we arrive at the desired assertion. 

4. THE MODEL EQUATION 

We illustrate the basic points in the construction of finite-difference, schemes for the nonlinear 
Korteweg-de Vries equation on the basis of the linear equation 

Ou/Ot  + a Ou/Ox  + ~ Oau/Ox 3 = 0, a,/3 = const > 0, (8) 

equipped with conditions (2) and (3). We have chosen this equation since it is linear but possesses 
the basic properties of the original nonlinear problem. For example, just as in Lemma 1, we can 
readily show that property (5) is valid for the linear analog of the operator L u :  Lou = L l o u + ~ L ~ u ,  
L lou  = a Ou/Ox.  In other words, L0 is a skew-symmetric operator: L0 = -L~. 

5. TWO-LAYER FINITE-DIFFERENCE SCHEMES 

In the domain Q, we introduce the standard uniform grids 

Wh~ = Wh • W~, Wh = {Xi = ih, i = 0 , . . . , N ,  h N  = l}, 

~r  ~- {tn = nT, n = 0 , . . . ,  No; TWo = T }  = wr U {T}. 

As a finite-difference approximation to problem (8), (2), (3), we use the simplest explicit finite- 
difference scheme 

Yt + ay~ + f l y ~  = 0, i = 0 , . . . , N ,  t E wr, (9) 

with the periodicity conditions 

Yi+N = Yi, y (x ,  O) = Uo(X), X E COh, (10) 

on the bottom layer, where Wh and wr are the uniform grids with respect to the space and time 
variables with increments h and ~-, respectively. 

Note that if condition (10) is satisfied, then we obtain the following approximation to the 
differential matching conditions: 

Yo = Y N ,  Y~,o = Y~,N, Yxx,O = Yex,N. (11) 

Let us show that for the explicit scheme (9), conditions (11) remain valid for t = tn+l as well. 
Since y~,0 = Y~,N and Yex~,o = (Y2 - 2yl + 2yN-~ -- YN-2) / (2h a) = Y~x~.N, it follows from (9) that 
Y0 = YN. Now, setting 9-2 = 9N-~, 9-1 = 9N-1, YN+I = 91, and 9N+2 = 9~, we obtain the 
approximation of the matching condition (11) on the (n + 1)st layer. 

To analyze the properties of the finite-difference scheme (9), we reduce it to the canonical 
form [14, p. 20] 

B (Y~+I - Y , ) / 7  + Ay~ = O, Yo = Uo, (12) 
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FINITE-DIFFERENCE SCHEMES FOR THE KORTEWEG-DE VRIES EQUATION 791 

where y~ = (y~, y ~ , . . . ,  y~v) w E H ,  u 0 E H ,  and H = ~h is the space of grid functions defined on 
the grid Wh and satisfying the periodicity condition Yi = Yi+N. Then in the scheme (12), we have 

B = E, A : ~h ~ ~h, A = aA1 + j3A2, (13) 

(y l - -yN-~) / (2h)  for i = O , N ,  (Aly), = (14) y~,~ for i =  1 , . . . , N - 1 ,  

{ y~x,1/(2h)--y~,N-~/(2h) for i = O , N ,  
(A2y)~ = y~,2/(2h) - Y~,I/(2h 2) + (y0 - YN-1) / (2h 3) for i = 1, (15) 

y ~ , ~  for i = 2 , . . . ,  N - 2, 
(Y~ - YN) / (2h 3) - Y~,N/(2h 2) - y~,N-: /(2h)  for i = g - 1. 

We equip the linear space ~ h  with the inner product  

N-1  

(u ,v)h = (u,v) = (h/2)uovo + E hu, v, + 
i = l  

and the norm IlYll = ~ .  
To study the properties of the operator A, we need the following assertion, which is a consequence 

of the well-known formulas of summation by parts and related periodicity conditions. 

L e m m a  3. The relation 
v) = - (u, 

is valid for arbitrary grid functions u, v E ~h. 

(16) 

Using Lemma 3, we can readily show that  

(v~x~, v) = 0 

for any grid function v E ~h. This, together with (16), implies that  

(Ay, y) = 0 ,  

(17) 

(18) 

i.e., A -- - A *  is a skew-symmetric operator. Since the scheme is in divergent form, it follows that  
the grid analog of the differential conservation law (6) is valid, i.e., the scheme is conservative. 

Def in i t ion  1. A finite-difference scheme is said to be L2-conservative if the grid analog 

IlY(t)ll 2 = Ily(0)ll 2, t e w~, 

of the integral conservation law (7) valid for the original differential system holds for this scheme. 

Let us now investigate the scheme (9) from the viewpoint of L2-conservativity. To this end, 
we take the inner product  of the operator equation (12) by 27y. Since y = y(0.~) _ 0.5Tyt and 
y(~) = ayn+~ + (1 - a)yn, it follows from (18) that  

H Y n + l l l  2 - -  T 2 ]]ytll 2 ---- I lyn[I  2 . (19) 

Hence we have the energy identity Ily(t)H 2 - E~,=~ T Ily~(t')ll 2 = Ily(O)ll 2, t e w~. The presence of 
the negative disbalance implies the invalidity of the corresponding conservation law and shows that  
the scheme is not necessarily stable in the L2 (~h)-norm of the energy space H = [th. 

By [15], the two-layer finite-difference scheme (9), (10) is said to be stable in L2 if for any 
y~ e H,  the solution Y~+I of problem (9), (10) admits the estimate Ilyn+lH _~ IlYnH, n = 0, 1 , . . .  
Since, by virtue of (19), this inequality fails for any Yn, it follows that  the scheme (9), (12) is 
absolutely unstable in L2. 

To analyze the stability of the scheme (12), one could also use the results of [16]. Indeed, since A 
and B are constant operators and B -1 = E exists, it follows that  the scheme (12) is stable in HB*B 
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if and only if B A *  + A B *  > TA*A.  Since A = -A* is a skew-symmetric operator (B = E), we find 
that this inequality is equivalent to the condition A * A  <_ O. Thus, the necessary stability condition 
in H is not satisfied, and the scheme (9), (12) is absolutely unstable in the weakest L2-metric. 

6. THREE-LAYER FINITE-DIFFERENCE SCHEMES 

To approximate Eq. (8), we use the three-layer finite-difference scheme 

y~ + ay~ + / 3 y ~  = 0, (x, t) E Wh~ (20) 

with the initial conditions 
y(x,0) = u0(x), yt(x,0) = ~0(x) (21) 

and the periodicity conditions Yi+g = Yi. When finding the second initial condition (21), one 
can use, for example, the differential equation (8) itself with t = 0. Now we rewrite the scheme 
(20), (21) in the operator form 

y~ + A y  = O, t E w~, Yo = Uo, yl = ~to, (22) 

where y = Yn E f~h and A is the skew-symmetric operator given by (13)-(15). Note that the 
analysis of three-layer finite-difference schemes with a nonself-adjoint operator A was performed in 
the papers [16-18] and the monographs [14, 19, 20]. Following [19, p. 367], we shall show that this 
scheme is stable for THAI[ < 1 and the energy inequality 

E( t )  = E(O), t �9 w~, (23) 

is valid for it, where E( t )  = I1~1112 + 2T(9,  Ay)  + Ilyll 2 > 0 and 9 = y( t  + T). To this end, we rewrite 
the finite-difference equation (22) in the form 9 + "rAy = fl - "rAy and estimate the squared norms 
of the left- and right-hand sides: 

II~lll 2 + 2T (9, Ay)  + T211Ayll 2 = H~III 2 -- 27 (Ay,  ~1) + "r~IIAY[[ 2. (24) 

We add Hyll ~ to both sides and take into account the fact that  A is a skew-symmetric operator, 
i.e., (Ay ,~ )  -- - (y, A~).  Then we obtain E( t )  = E ( t  - T) . . . . .  E(0). Let us now show that 
E( t )  > 0. Indeed, E > I1~)112 - 2T IlYll IIAYll + HYll 2 >- IlYll 2 -'r211AYlI2 > 0 if "rHAII < 1. Under the 
more restrictive condition 

"r2[[A[[2 __ 1 - ~, 0 < e < 1, (25) 

it follows from (23) and (24) that the scheme (20), (21) is stable in the grid L2-norm, i.e., the 
a priori estimate [[y[[2 < ~-IE(0) is valid for any t �9 w~. 

Thus, the explicit three-layer scheme (20) substantially differs from the two-layer one (9): it is 
stable in the space H -- 9th under condition (25). 

To derive stability conditions convenient for numerical verification, we estimate the norm of the 
operator A -- hA1 +/3A2 from above. By virtue of definition (14), we have 1( 1 ) 

I IA ly l l  2 -- ~ hY~,i + (Yl - -  YN-1) 2 = 4h 2 ~ h (Yi+l - Yi-1) 2 + h (Yl - -  YN-1) 2 
i=1 i=1 

1 2 hy~_ 1 + ~  hy,+, + (Y~ + Y L 1 )  = IlYlI", 
~ /=1 i----1 

whence IIAlll _< 1/h.  To estimate the norm of the operator As, we consider the quantity 

N-2 
A 2 hl~ ~ h l~_ ,  0.hhl~,  II ~.yll - -  O.hhZo ~ + + ~ hy~x~,, + + 

' i = 2  

where, by (15), 
10 = lN = 0.hh -1 (Y~x,1 - Y~x,N-1), 

z~ = O.hh -~ (y~x,~ - y~,l/h + (yo - y~_ l ) /h~) ,  
ZN_l = - 0 5 ~  -1 ( y ~ , ~ - 2 -  y~,N/h + ( Y l -  Y N ) / ~ ) .  
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p 2 Using the algebraic inequality (~k=l ak) < ~ 2 - -  P ~ - , k = i  ak, in (26), we consider the term 

793 

N-2 N-2 ~ 2 1 1 N-2 
hYxx& = 4h 6 E h (yi+2 - 2yi+1 + 2 y i - 1 -  yi-2)2 --~ ~ E h (yi2-b2 + 4Yi2+' + 4Yi2-2 + Yi2-2) " 

i=2 i=2 i=2 

In a similar way, we have 

0.5h (l~ + l~v) _< h -6 [h (4y~ + y~ + Y~-2 + 4Y~v-1)] , 

~Zl ~ _~ ~ -~  ~ + ~ + ~ + ~ _ 1  + ~ ) ] ,  

hZL1 _< h -~ [h (2y0 ~ + yl ~ + 4y~_2 + y~_~ + 2y~)].  

Now, summing the resulting estimates, we obtain the relation IIA211 _< x / ~ / h  3. By virtue of the 
triangle inequality, we have 

IIAII _ ~o(h), p(h) = a/h + t3vf-~/h s. (27) 

The stability of the explicit three-layer finite-difference scheme (20)-(22) with respect to the initial 
data has been proved under the condition THAII < 1. Now, using the estimate (27) for the operator 
norm, we obtain the equivalent requirement T << Tk, Tk = h3/(/3x/~ + ah2). In other words, 
the explicit scheme (20), (21) is conditionally stable. The last inequality is often referred to as the 
Courant stability condition, and the quantity Tk is referred to as the Courant number. 

R e m a r k  1. Let us show that the solution of the finite-difference scheme (22) satisfies the grid 
analog 

E2. (t) = E2. (0), t E wr, (28) 

of the integral conservation law (7), where E2~ (t) = (y(t + T), y(t)), y(t) E f~h. Indeed, taking 
the inner product of Eq. (22) by 2Ty and using the identities 2T (y~, y) = E2. (t~) - E2. (t~-l) and 
2T(Ay, y) = 0, we obtain (28). Since 

(~), y ) :  (I]~112 + Hyll 2 -  v 2 ]]ytH 2)/2,  (~), y ) :  (Hy + yH 2 -  ~_2 Hyti[2)/4, 

it follows that the expression E2~ is not a grid norm. Therefore, in spite of the fact that the grid 
conservation laws (23) and (28) are valid for the finite-difference scheme (22), this scheme cannot 
be called L2-conservative in the sense of Definition 1. 

7. WEIGHTED SCHEMES 

For the model equation, we consider the manyparameter family of schemes 

yi + Ay (~1'~) = O, t E wr, Yo = Uo,  Y t ,o  : -  ~tO, 

where 0.1 and 0.2 are real parameters; moreover, y(~1,~2) = 0.1~) + (1 - 0.1 - 0.2) Y + 0.2Y. 

(29) 

T h e o r e m  1. Let A ~ A(t) and 

0.1 _> 0.2, 0.1 + 0.2 _> 1, A = -A*,  A : f~h --~ ~h 

in the scheme (29). Then the finite-difference scheme is stable, and 

(30) 

n 

Ily~§ + E 2~2 (0., - 0.2)Rly~,kli 2 = Ilylll~, 
k=l 

(31) 

where 
{[yl[12 : 0.5 (llyII 2 "~-]]yll 2) "~- 0.5T 2 (0.1 "~- 0"2 -- 1)Hydl 2 , 

Y~:O.5(yt-bY~)'=(Yn+I--Yn-1)/(2T),  Y~-~(Yn--Yn-1)/T. 
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Proof .  Since A is a skew-symmetric operator and y(~ E 12h, it follows by multiplication of 
Eq. (29) by 2Ty (~'~) that 

Taking into account the identity 

y(al,a2) ____ 0.5 (9 -~- Y) + 7" ((71 -- 0"2) y~ -~- 0.57" 2 ((71 -~- (72 -- 1) Y~t, (33) 

we arrive at the relation HY~+IlI~ + 27"2 ((71 - (72)IlYill 2 -- IlYnll~, which implies the desired assertion. 
We have thereby proved that the scheme (29) is unconditionally stable (without constraints on 

the relationship between the increments V and h) if the weights 31 and 32 satisfy conditions (30). 

T h e o r e m  2. I f  ca = 32 = 0.25, then the scheme (29) is L2-conservative and the energy relation 

110.5 (v ,  + y,,+l)ll = 110.5 (y0 + yl)ll (34) 

is valid. 

Proof .  Using the identity y(~1,~2) = y + T (0" 1 - -  0 2 )  y~ + 0.5T 2 ((71 -}- 62) Y~t, we can reduce the 
three-layer scheme (29) for vn = (y~ + Y~+I)/2 to the two-layer scheme 

vt + Av  (~ = 0, v0 = 0.5 (Y0 + Yl).  (35) 

Taking the inner product of the last equation by 27.v (~ in f~h and taking into account the re- 
lations 2T (Vt, V (0"5)) : II?)ll 2 -  IlVll 2 and (Av (~ (~ = 0, we obtain the discrete analog (34) 
of the integral conservation law (7), valid for the grid solution on the half-integer time layer 
Yn+l/u = 0.5 (y,~ + Yn+l). 

R e m a r k  2. The scheme (29) with arbitrary 31 and 32 is conservative with respect to the 
solution Y,~+a/2 as well. 

Indeed, summing (29) with respect to x E Wh and taking into account the relation y E 12h, 
we obtain ((Yn + Yn+l)/2,1) = ((Y0 + Yl)/2,1). 

8. NONLINEAR SCHEMES 

Let us consider the nonlinear Korteweg-de Vries equation (1). We construct and investigate 
completely conservative (i.e., conservative and L2-conservative) weighted finite-difference schemes 
and obtain related a priori estimates. 

As was mentioned above, a finite-difference approximation must preserve the basic properties 
of the continuous medium. Therefore, it is natural to require that finite-difference analogs of the 
conservation laws (6) and (7) be satisfied. For the construction of conservative schemes, Tikhonov 
and Samarskii suggested the integral-interpolation method. 

To construct a conservative scheme for the nonlinear Korteweg-de Vries equation, along with 
the integral-interpolation method, we use the Steklov averaging of the function u2: 

u+ 
u2 . " 1_ / u 2 d u _  1 (u3)x _ 1 

- u 3 ux 3 (u]_ + uu+ + u2) ,  (36) 
u 

where u+ = u (x/+l, t), t E wT. Using (36), we construct the explicit three-layer scheme 

y~ + (1/6) ((y3)~/Yz)~ + ~Yzx~ ---- 0 (37) 

of the second-order approximation, which is algebraically equivalent to the grid equation [5] 

Y~ + 9Y~ + / 3 y ~  = 0, i = 0 , . . . , N .  (38) 
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The initial conditions and periodicity conditions are precisely approximated: y(x, O) = no(x), 
x E Wh, and Yi+g = Yi; here ~ = (y+ + y + y_) /3 .  Note that, by virtue of the divergent form of 
the finite-difference equation (37), we have 

E h(yn-~-Yn+l)/2---- E h(y0 + Y l ) / 2  
xEg~h xEh~h 

for any n -- 0 , . . . ,  No - 1, i.e., the finite-difference scheme (38) is conservative. We rewrite it in 
the operator form yi + Ay -- 0, where the linear operator A defined as 

Ay = ~/Aly + ~A2y (39) 

is given by (14) and (15). Let us show that, just as in the case of the differential problem [see (5)], 
we have 

(Ay, y) = 0  (40) 

provided that  y E ~th. To this end, it suffices to prove the relation (~Aly, y) = 0. Using the identity 
yy~ = (yy~ + (y2)~)/3 and Lemma 3, we obtain 

(~]A~y,y) = (~y~,y) = ( ( y y ~ , y ) -  (y2, y~)) /3  = 0 .  

Consequently, relation (40) holds. 

9. IMPLICIT CONSERVATIVE SCHEMES 

Let us consider the class of three-layer weighted schemes 

Yi + AY (~'~) = 0, (41) 

where, by (39), Ay (~'~') = ~](~'~)A~y (~',~) + ~A2y (',~). Since (Av, v) = 0 for v = y(~'~), we have the 
following assertion. 

T h e o r e m  3. The finite-difference scheme (41) with spatially periodic solutions is conservative 
and L2-conservative for a = 0.5 and a = 0.25, and its solution satisfies the following grid analogs 
of the differential conservation laws (6) and (7) for any T, h, and ~: 

Elh( t )=O,  Elh( t )=O.5(~)+y,  1), t E w , ,  (42) 
l 

El(t)=Ei(O), E l ( t )=O.5 I (~Tu)dx  , tE[O,T-T) ,  (43) 

o 

E~:)(t) = S~: ) (0 ) ,  S (~)2~ = 0.5 (ll~lI: + Ilyll:) + ~ ( ~ -  0.5) Ily~ll:, (44) 

E~~ = E~~ E~~ = 0.5 ~ d ~  + u~dx , (45) 
o o 

E(~)(t~3,~,, = E(~)r0~,,,, ,, E(~)3~ = Ily~+l/21I 2 +T2(a-O.25)  Hytll 2 , Y~+1/2 = 0.5(~ + y) , (46) 
l 

E~ ~ = E~ ~ (47) E(? 25) = / u2(x,t + ~/2)dx. 

Proof .  Using summation over all nodes of the grid for the scheme (41), we can derive iden- 
tity (42) (that is the conservativity property). [The scheme (41), by (37), can be reduced to the 
divergent form 

0.5 (~ + y)~ + (1/6) ((v3)~/v~)~ + ~ v ~  = 0 

for v = y(~'~ 
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Note that  the expressions (43), (45), and (47) are algebraic corollaries to the differential conser- 
vation laws (6) and (7). To prove the energy relations (44) and (46), one takes the inner product  
of the finite-difference scheme (41) by 27y (~'~) in H and uses the identities 

y(~'~) = 0.5 (9 + 9) + ((7 - 0.5)~2y~, ~(y~,9 + ~) = 0.5~ (119112 + Ilyl12)~, 

2~ (y~, ( (7-  0.5)~2y,~) = ~ ( (7 -0 .5 ) ( l ly< l l  2) E (=) E (") ~- ' 2h ~ 3h " 

By virtue of Definition 1, the L2-conservativity of the scheme (41) with (7 = 0.5 and 
(7 = 0.25 in the sense of the approximations (44) and (46) follows from the corresponding dif- 
ferential conservation laws (45) and (47). 

Using the idea of the representation of convective terms in the divergent and nondivergent form, 
we can construct the class of L2-conservative finite-difference schemes of the form 

/7~ (~,~2) + (1/3)(yy(~<"'<'~) + (yy(<"'~))~) + ,_y~x~ = 0, (48) Yl 

which are already not nonlinear with respect to Y. From (16) and (17), we have 

(~1,~) O. 

Consequently, by Theorem 1, if (71 ~_ (72 and (71 + a2 _> 1, then the solution of the finite- 
difference problem (48), (21) admits the a priori estimate (31). By Theorem 3, the scheme (48) 
is L2-conservative with respect to the functional E~ ~ for al = (7~ = 0.5 and with respect to the 

functional ~(0.2~) for al  = (72 = 0.25. " ~ 3 h  

R e m a r k  3. The above-constructed scheme (48) is not conservative. However, it can be viewed 

as the linearization v t + (1/3) + t } )  + = p v ~  0 of the nonlinear scheme t V V~ \ ~ ~ 

O' ) where y~ = ~ - 9 /(2~), 

-(~l,a2) (al,a2) /7- (al,a2) Yl + Y Y~ + ~-Y~x~ = O, 

(u :  v=y(~l '~2) ,and  v~ = - _ 

(49) 

k 
If the iterative process is convergent (limk_.~ Y = Y), then it provides a solution of the conser- 

vative and L2-conservative scheme (49) for al = a2 = 0.5 or al  -- a2 -- 0.25. 

R e m a r k  4. Let us present an L2-conservative scheme for the parabolic equation 

a s ~ a t  = O/Ox(k  au lOx) ,  k > ko > O, u(x ,O) = So(X), u(0,t)  = u(Z,t) = O. (50) 

Let 
l t l 

= dx dt. 

0 0 0 

Taking the inner product  of Eq. (50) by 2u, we obtain the integral conservation law 

E ( t ) = E ( O ) .  

We can readily see that  for the conservative weighted finite-difference scheme Yt = 

Yo = YN = O, the grid analog of (52) is valid for a = 0.5. 

(51) 

(52) 

(o.(:)) , 
x 
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