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ABSTRACT

In the present work a method of numerical solution of multi-interface two-dimensional 
Stefan problem with explicit tracking of the interfaces in the domains of arbitrary form is 
considered. The method is based on the idea of dynamic adaptation of the calculated grid 
by means of transition to an arbitrary non-stationary coordinate system. The coordinate 
system transformation is controlled by the solution. The method is described by using the 
example of the problem that is typical for treatment of materials with concentrated energy 
fluxes.

IN T R O D U C T IO N

The interest to the Stefan problems is caused by their important physical and 
technological applications dealing with at the influence of concentrated en
ergy fluxes on metals and ceramics [1]. Principal complexity of mathematical 
studies of Stefan-like problems is due to presence of moving boundaries that 
leads to essential nonlinearity. Analytic solution of such problems can be ob
tained only under strong simplifying assumptions. There are two widely used 
approaches to the numerical solution: explicit tracking of moving surface and 
using of smoothing procedures. For problems of pulse action of high energy 
fluxes on materials the non-equilibrium of fast phase transformation can play
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a dominant role. In this case it is necessary to locate explicitly the phase 
boundaries and to take into account the related processes.

In the present work the application of a dynamic adaptation method [2] for 
the solution of a multi-interface Stefan problem in arbitrary two-dimensional 
areas with explicit tracking of the interfaces is considered. This method is 
widely used for solution of one-dimensional problems of mathematical physics 
[3]. The dynamic adaptation method for solution of two-dimensional problems 
is based on the idea of transition to non-stationary curvilinear coordinate 
system. In this coordinate system the problem is described by an extended 
system of the differential equations, one part of which describes the physical 
phenomenon, and the second one deals with the movement of computational 
mesh nodes.

1. M A T H E M A T IC A L  M O D E L

The mathematical formulation of the classical version of the two-dimensional 
Stefan problem, describing the melting and crystallization processes, is re
duced to quasi-linear heat transfer equation in an arbitrary region Uxy with a 
priori unknown moving boundary r ej(i) which separates solid fla(t) and liquid 
fh(t) phases:

dH
dt

dWj
dx

dW2
dy

m =  s,l, ( 1.1 )

Hm =  cpPmT, =  (w2)m =  - \ m(T)

On the Г si (t) the differential Stefan condition is fulfilled

W r -W .p  =  Lmp v^  W l  =  W f

OT 
dy ‘

(1.2)

and the temperature is continuous and equal to the equilibrium transition 
temperature

Ts =  Ti — Tm. (1.3)

Here n and r  denote normal and tangent components, the s and / refer to 
solid and liquid phases, Tm,L m are the temperature and latent heat of melt- 
ing/crystallization, vsi is the velocity of motion of the interface. On the 
boundary dClxy the boundary conditions are specified

(W,n)\9niy =  f ,

where W  =  {W\,W2) is the vector of heat flow, n is the external normal to 
dtlxy, f  is a given function.



The account of evaporation results to appearance of the second mobile 
interface Tit,(t) in area й ху. The process of the advanced surface evaporation 
on this boundary is described by three conservation laws (mass, momentum 
and energy)
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PlViv = P v (u ~  t/£), (1.4)

Pi +  P l « ) 2 = P v  +  Pv(u ~  O 2, (1.5)

~ Хдп = ° П~ LvplVb« l1-6)

and two additional relations describing the kinetics of phase transformations, 
they are determined from the Knudsen layer approximation [4]

Tv =  Tv(Ti, M ), pv = p v(pH,M).

Here the index v denotes vapor, G is energy source intensity, и is hydrody- 
namical velocity of vapor, P  is a pressure, M  is the Mach number and рн 
denotes the saturated vapor density.

2. P R O B L E M  STA TE M E N T IN  A N  A R B IT R A R Y  CU R VILIN 
E A R  U N S T E A D Y  C O O R D IN A T E  S Y ST E M

The solution of this problem consists of determination of temperature fields 
and position of phase fronts r ej(f), To map the physical space with co
ordinates (x , y, t) into computational one with (£, rj, r ) we shall apply general 
transformation £ =  £(z, y,t),T) =  r](x,y,t), т =  t. The differential problem 
(1.1) -  (1.6) in the arbitrary non-stationary curvilinear coordinate system 
(£,rj,r) can be written in the form:

[ £ « -Я )  =  1 +  -  (pWl +  HQ2)?Z ]  -  (2.1)

dx
дт - ]  . [ j rp Jm Lor

Q2
P j Ш] . m =  8,1 (2.2)

with the corresponding boundary conditions on the lines of phase transitions
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{(.,4 =  ilsi) € Гв/ :

\ ( ~ ^ щ  +  П щ ) ,  -  ( - w Щ  +  =  - £ » « 5 .  <2-з)

(£>*?) € Г/„ :

е г . =  - л ( “ + v 1) .\ pi /
(2.4)

Ж 2 _f l  +  i i i s ^  =  Pe + ^  ( „ + * ! » )  ,
Pi ' P i  '

(2.5)

( _ ^ 1^  +  ^ 2^ ) i7 " = G n +  L l)gri;, 4 =  const, (2.6)

(W,
dr)

т,,  9a; v 1 Gn +  Lvg "v, £ =  const, (2.7)

where

Ар /  ду дТ  dy dT \ 
ф v di) <9£ d£ dr) /

Ф =  pJ
_ /dxdy
~ p \dtilh)

dx dy\
a —

> £ ( _ d x d T  fa d T \  
ф V dr) d£ +  d£ dr) )  ’

Here Qsi and Qiv are the flows of substance through the interfaces Tei and 
Г|„ respectively, Q i, Q2 are the arbitrary transformation functions and J -1 
is the Jacobian of inverse transformation.

3. A L G O R IT H M  O F SO LU TIO N

For the finite difference approximation of the problem (2.1) -  (2.7) in the 
domain x  [0, to];

«Сч =  {«.*?)  : 0 < e < l ,  0 < 77 <  1 }

we shall introduce the rectangular grid ui with the steps h^,hv, A rJ respec
tively.

The functions xj k,yj k, Q{ i k, Q2 i fc are determined in the grid nodes, while 
the functions T/+1/2 fc+1/2, ^ +1/2(fc+1/ 2. H li+i/2,k+i/2 are evaluated at the
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cell centers. Variables W j i+1/2k, W (i+1/2fc, ^ { Л+1/2, W {jfc+1/2 are eval
uated at the centers of cell edges. Using the integro-interpolational method 
[5] the initial differential problem is approximated by means of the implicit 
difference scheme

(ФН )1+1/2,к+1/2 ~  № H Yi+l/2,k+l/2 _  1 f ( w  H O  .
---------------------------- l (p W l  + H Q ^ , k + l/2

x  ( j / i + l . k + l  — Vi+l,k) ~  (pW ‘l +  H Q l)iik+i/2 (j/i.fc+1 ~  Уг,к)

-  (pWi +  H Q l)i+i/2,k+l (Vi+l,k+l ~ Уг,к+1) +  (PWi +  # Q l ) , +  1/ 2|fc 

x  G/i+l,fc — 2/i,fc) — ( P ^ 2  +  HQ2)i+\ik+l/2 ( ^ i + l . f c + l  — x i+l,k)

— ( pW2  +  H Q 2 ) i )k + i /2  (•Ei.fc+l — x i,k) ~  {pW\2 +  H Q 2 /2 ,fc+ l

1 j+ 1
( ^ i + l ^ k + l  — ® t , k + l ) "h (pW2 +  ^■Q'i)i+l/2,k (®*+l,fc — x i,k)j

~(.'Ф9)\+1/2,к+\/2-

Here

tVl ,i+1/2,fc =  -------- Г" ; ’ ’ {(Уг+1/ 2,к+1/2 ~ 2/i+l/2,fc—1/ 2) ( î+l.fc “
4>i+ l/ 2 ,k ‘ 1̂  ""!)

— ( j / t+ l .k  “  2/i,k) ( - f j + l  / 2,fc+l /2 — 1/ 2) }  1

^ М . к - Н / г  =  -------- —j—r~ { ( j / i . k + l  -  Уг,к) ( ? i + l /2 , f c + l / 2  ~  l/2,fe-t-l/2)
Щ ,к+1/2^Пг,

~  (z/i-fl/2,k+l/2  — 2/i —l/2,fc+l/ 2) (7i,fc+l — )

=  — ~7------f—r—j—  { -  { x i+l/2,k+\/2 -  ®i+l/2,fc—1/ 2) (^i+l.k -  T itk)
V i+ l/ 2 ,k n € n r)

+ (x i+ l ,k  ~  x i ,k )  { T i+ l /2,k+l/2  “  -fi+l/2,k—1/ 2) } ,

W 2 ,i ,k + l/ 2  = --- ;-------  ̂ , { -  ( î.k+l “  x i,k) {T i+  l/2,fc+l/2 ~  —1/2.Ы-1/2)
Yi,k+\/2’ li  Пт)

+  {x i + l / 2 ,k+l/ 2  ~  x i - \ / 2 ,k-\-l/ 2 ) (Ti,k+ 1 — Ti'k)}  •

The required interpolations are performed by means of the following formulas:

Hi,k+1/2 =  0 .5 ( H i + i/2 ,fc+l/2  +  H i- i /2 ,k + l /2 ) ,

# 1 + 1 /2 ,к =  0 . 5 ( t f i+ 1 / 2>JH-l/2 +  # i + l / 2 , f c - l / 2 ) ,
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Qi,k+1/2 — 0.5(Qi,fe+l "b Qi,k)i 

Qi+l/2,k =  0.5(Q{+i)fc +  Qiyk)i

Xi+ 1 / 2 ,k+i/ 2  =  0.25(®i,fc +  X j^ + i  +  Xi+\tk +  Si+i.fc-i-i),

Vi+1/2,k+l/2  =  0-25(j/i,fc +Ui,k+ 1 +U i+l ,k  +  2/i+l,fe+l)-

The algorithm based on two iteration cycles have been used on the each time 
step A tj to solve the difference scheme. In the first cycle the Qiik velocities of 
grid nodes and their positions have been determined and in the second cycle 
the distribution of temperatures in the domains O i,f!g have been calculated. 
The obtained systems of the linear algebraic equations have been solved by 
means of the method refereed in [6]. The value of normal component of the 
mass flow on the line of phase front Г„| in the edge centers of cells is determined 
from the Stefan condition:

Q"+ w  =  -  (№7+1/2,*),] , i  =  0 . . . . . /  -  1. к =  к„.

Here (•)" is the normal component of corresponding vector with respect to 
the line of phase front. To determine velocity components for the nodes of the 
phase fronts Г81,Г 1„ the mass conservation law have been used. To provide 
more equidistant nodes distribution on the line of phase front the tangential 
component of the mass flow Qri k also have been determined. Finally, we
obtain the following expression for the determination of Qi+ — (Qi,i,k,Q-2,i,k)

Qi,k =  Qiik-n +  Qj<k • f ,

where n is the unit vector of normal and r  is the unit vector in the tangential 
direction to the phase front line.

Verification of the dynamic adaptation method have been carried out on 
the freezing problem referred in [7]. The obtained results [8] testify a high 
accuracy of this method for solution of the Stefan problem with explicit phase
boundary tracking.

4. N U M E R IC A L  E X P E R IM E N T

Let us consider application of the suggested dynamic adaptation algorithm to 
solve the problem of action of high-energy flux on metal target. Rectangular 
energy pulse of diameter 3.8 • 10-4m and intensity 105W /cm 2 incidents on 
the surface of the elliptical domain Uxy. Thermophysical parameters close to 
ones of lead have been chosen.

The solution algorithm consists of two stages. At the first stage the entire 
domain is equal to solid sub-domain Uxy =  and the process is described by
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with maximum nodes concentration in the energy release zone have been 
constructed before the beginning of calculations Fig. 1. This grid have been 
used for temperature field calculation until Tmax < Tm condition is fulfilled 
on the irradiated surface.

Figure 1. The computational grid in the physical space.

Figure 2. Physical space fragments with introduced liquid phase.

At the second stage, that begins when equilibrium melting temperature Tm 
is reached on the surface, the processes are described by the two-phase Stefan 
model. To introduce the new (liquid) phase the overheating of irradiated 
surface by 0.1 К is supposed. From the relation of overheating energy and 
latent heat Lm initial thickness of the liquid phase is determined (about 10-8 
m) and the new subregion flj, Clxy =  f]gUf2/ is introduced. A computational 
grid with 19 x 6 nodes is defined in the new phase (total number of nodes is 
equal to 19 x 24). From this time moment the grid is reconstructed on each 
time layer. The numerical solution is accompanied by radical reorganization 
of a computational grid Fig. 1. Fragments of physical space immediately after 
the new phase introduction are shown in Fig. 2 in an expanded scale.

The peculiarities of the problem sire a high speed of the interfaces movement 
and an essential deformation of the initial area. The change of maximum 
temperature in Clxy and maximum velocities of interface boundaries Гв/ and 
Г/,, are presented in Fig. 3. The maximum velocity vsi reaches ~18 m/s 
immediately after the liquid phase introduction and then it decreases to ~0.03
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m/s. The distribution of temperature fields in the region flxy at different time 
instants is shown in Fig. 4.

Figure 3. The change of maximum temperature and maximum velocities (l-v ,i, 2-n/„).

t=2.£M0''s

Figure 4. The distribution of temperature fields in the region Qxy at different time 
instants.
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D V IM A C IO  D A U G IA SL U O K SN IO  STEFAN O  U ZD A V IN IO  
S P R E N D IM A S  D IN A M IN IO  A D A P T A V IM O  M E T O D U
V.I. Mazhukin, M.M. Cuiko

Straipsnyje nagrinejamas dvimaCio daugiasluoksnio Stefano uzdavinio adaptyvus sprendimo 
algoritmas. Naudojamas iSreikStinis fronto skaiCiavimo algoritmas, leidSiantis rasti bet 
kokios formos konturus. Remiantis dinaminiu adaptavimo algoritmu, fizine sritis yra atvaiz- 
duojama j fiksuot^ skaiCiavimo sritj. Tfransformacijos atvaizdavimas adaptyviai priklauso 
nuo paCio uzdavinio sprendinio. Bendrasis metodas pateiktas dviejq medSiagij s^veikos 
uzdaviniui. Naujojo algoritmo efektyvumas iliustruojamas skaiCiavimo eksperimento rezul- 
tatais.


