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Abstract—A method for constructing grids dynamically adapting to solutions is applied to problems
with unstable (relaxation or oscillatory) solution behavior. Numerical simulation is used to analyze
steady and pulsating modes of laminar combustion in wide ranges of Lewis numbers and activation ener-
gies. The efficiency of the method is estimated in terms of its time complexity and the number of nodes
employed. The numerical simulation shows that dynamic adaptation reduces the number of grid nodes
by 1-2.5 orders of magnitude and the time complexity by a factor of 2-50.

INTRODUCTION

The practice of numerical simulation [1-5] demonstrates that the application of grids adapting to solu-
tions substantially increases the efficiency of computational algorithms, resulting in a substantial increase
in solution accuracy and a simultaneous reduction of the number of grid nodes. Such grids are particularly
efficient when employed in solving time-dependent problems with fast-moving narrow zones of steep gra-
dients, such as the problem of subsonic laminar flame propagation. The high rate of chemical transformation
of a reactant and the slow propagation of thermal perturbations in the unreacted mixture result in the for-
mation of a narrow combustion zone characterized by steep gradients of temperature and concentration.

The main problem in the theoretical studies of combustion processes is the determination of the normal
velocity and regime of flame propagation. One of the most important factors affecting the propagation
regime of the flame front in the problem of laminar (layer-by-layer) combustion (frontal combustion) is the
relation between the transport coefficients, the species diffusivity D and thermal diffusivity o. Depending
on their ratio (the ratio of D to o is known as the Lewis number Le = D/a.), the combustion proceeds in a
steady (Le = 1) or pulsating (Le # 1) regime (see [6]). Steady regimes are characterized by constant front
propagation velocities and stable thermodiffusional flame structures. The onset of a thermodiffusional insta-
bility involves a violation of the similarity between the temperature and concentration distributions, and the
front velocity can exhibit a complicated pulsating pattern. The more the Lewis number deviates from unity,
the stronger are the manifestations of the instability. The equality Le = O formally corresponds to the com-
bustion of a condensed substance. Numerous theoretical studies [7-11] have been devoted to the determi-
nation of conditions for the thermal stability of the combustion of condensed substances and for the ther-
modiffusional stability of gas combustion. However, numerical simulation of unstable and self-sustained
oscillatory regimes remains a difficult computational problem [3]. In particular, grids with huge numbers of
nodes are required {11].

From a computational perspective, combustion problems are specific in that they involve processes with
widely different characteristic times: a short chemical reaction time and the long time associated with the
diffusive mechanism of thermal relaxation. Accordingly, the high rate of chemical transformations in the
substance and the slow propagation of thermal disturbances and diffusion in the reactive mixture result in
the formation of a narrow combustion-zone with steep gradients of temperature T and density p. The com-
bustion front appears at one of the boundaries and quickly moves toward the opposite one. In a numerical
solution, a certain number of grid nodes must lie in the reaction zone. These two features preclude using
grids with fixed nodes to discretize space variables with a large step. When the ratio of the domain size to
the typical width of the combustion zone is large, the efficiency of computational algorithms with fixed grids
rapidly deteriorates because of the large number of nodes required. For example, the conventional grid con-
tains 3000-5000 fixed nodes in a typical problem of unstable combustion [11]. In this situation, grids that
dynamically adapt to a solution are much more efficient, since a necessary number of nodes is concentrated
in the zones of rapid variation.
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The dynamically adaptive method proposed in [12-14] for solving time-dependent problems has proved
to be highly efficient as applied to moving-boundary problems with steep solution gradients. It can be used
to solve problems by automatically capturing strong discontinuities, such as phase boundaries in multiple-
front Stefan problems [15, 16] and shock waves in gas dynamics [17]. In problems of the Burgers type, the
application of dynamic adaptation [18] allows one to substantially improve the quality of difference
schemes by nearly eliminating their dispersive properties and considerably reducing dissipation. Eventu-
ally, this made it possible to reduce the number of nodes by two to three orders of magnitude as compared
to grids with fixed nodes. However, the dynamic adaptation method in which the transformation function is
determined by applying the quasistationarity principle has never been applied to problems with oscillatory
solutions.

In this study, we extend the dynamic adaptation to mathematical models of various stable, unstable, and
oscillatory regimes of laminar combustion and determine the efficiency of the method in terms of time com-
plexity and number of nodes employed.

1. MATHEMATICAL FORMULATION OF THE PROBLEM

The physical mechanism of flame propagation in a quiescent gaseous mixture is dominated by heat trans-
fer from the high-temperature burned gas to the unreacted gas. Consider a quiescent gas that is homoge-
neous in terms of temperature and concentration. The propagation of an exothermic reaction front in this
medium is considered in the simplest case of a single-stage combustion, with the heat release function of a
first-order chemical reaction, @, expressed in the form

O(T, p) = hpke ™™, (1)
where # is the heat of reaction per unit mass, k is the rate constant, E is the activation energy, and R is the
gas constant.

Thus, the heat release rate of an exothermic reaction depends linearly on the medium density p and
exponentially (according to the Arrhenius law) on the temperature T, which is consistent with the modern
theory of chemical reaction kinetics in homogeneous media. Assuming that the combustion process is iso-

baric and heat is transferred through diffusion, one can describe laminar flame propagation by a system of
two parabolic differential equations, the heat and diffusion equations with constant thermal and species dif-

fusivities, o and D, respectively. The dimensional formulation of the problem in the physical space Q;; has
the form

aT a2T ( E)
C pp—= = A—= s +h nkex 2
i Da;C2 pkexp 27/ 3)
0 <x<x =L, 120

where 1 and X are time and coordinate, respectively; D, A, C,, and p, are species diffusivity, heat conduc-
tivity, specific heat, and initial density of the substance, respectively; and L is the length of the domain under
consideration.

Initial and boundary conditions. In choosing the value of L, we took into account the fact that the typ-
ical size of the combustion chamber in an internal combustion engine is =5 cm. As a rule, the value of L
used in calculations did not exceed 10 cm.

Normally, a chemical reaction in a substance is initiated at a boundary by means of an external energy
source, and a reaction front propagates toward the opposite boundary. Suppose that the source is a hot wall

located at x = 0. Its temperature varies linearly from an initial temperature T to a so-called adiabatic flame

temperature To=To+ h/C,, To < T < T,. The mass flux across the left boundary was assumed to be zero.
These assumptions correspond to the following relations:

9p(0, 1)

ax = 'iO = O. (4)

=t

7(0,7) = To+ct, -DIE= =,
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The opposite wall at x = x; is assumed to be thermally and diffusionally insulated:

AT(xy, 1) _ RELD _ o oo
_}LT—O, —DT—O, X—XL—L. (5)

The initial temperatures T (x, 0) were chosen by using the fact that the heat release rate (1) practically
vanishes at Ty . The initial density p (x, 0) was set equal to the unperturbed-gas density p,:

T(x,0) = To, p(x,0) =py 1=0. (6)

For numerical convenience, problem (2)—(6) was reduced to a dimensionless form by introducing the fol-
lowing dimensionless variables:

_p % _toa . _TC, . EC, ., kI’ A _D
p—po’ x_L, t"'sz T= h. s e_Rh, A_ a» a"‘CppOa Le_a’
where 0 is the dimensionless activation energy, and A is the preexponential factor.
In dimensionless form, equations (2) and (3) are written as
oT _ T 9
ot 3x P exp( T)’ 2
ap o’p ( 9)
& el E_ —= 8
3 Leax2 pAexp 7 (8)

where 0 =xy<x<x;=1,120, (x, t) € Q,,. The initial and boundary conditions in the space Q,, are

T(x’ 0) = TO’ p(x! O) = pO’ t = 0,

T T0+Ct, ISI/C, Dap 0 0
(%o, 1) = T, t>1/c, Tex T FTRES ®)
aT _ ap _ _
—Kax =0, Dax =0, x=1,

where c is a constant.

In these equations, p varies from unity to zero. In the absence of external heat sources, the value of the
dimensionless temperature T lies in the interval Ty < T'< T,, where T, = 1 + T;,. The parameter values adopted
in this paper are similar to those used in [19] for the combustion of hydrocarbon fuel in air, which is char-
acterized by a sixfold increase in temperature. Therefore, the value T, = 0.2 is taken as the initial condition
in most cases, which implies T,/T, = 6. Typical values of the dimensionless activation energy for the reac-

tions of hydrocarbons in air are 6 = 3-6.

2. ARBITRARY TIME-DEPENDENT COORDINATE SYSTEM
AND CONSTRUCTION OF DYNAMICALLY ADAPTIVE GRIDS

Let us use the dynamic adaptation method [12, 13], in which the mesh is constructed by changing to an
arbitrary time-dependent coordinate system with variables (g, T) belonging to some computational space
€2,:- The transformation of coordinates is performed by using the desired solution. The partial differential
equation of the inverse transformation is constructed so that the velocities of the nodes depend on the
dynamics of the solutions to the equations describing the physical processes.

The change from a physical space €2, to a computational one €, is defined by a coordinate transforma-
tion of the general form x = £(qg, T), 1 = T, which has an inverse transformation g = @(x, t), T = . The Jacobian
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of this transformation is \ = dx/dg. The partial derivatives of the dependent variables are expressed in a stan-
dard form:

0 .99 12 2 99090 _ 1913

dx  0xdq wWdq 3,2 0dxdgdxdq wdqyodg
where dx/dt =-Q is the velocity of the motion of the time-dependent coordinate system. In the new variables
(g, T), problem (7)—(9) can is written as

0 10T

oT _ _10W_QdT (__) - _LdT

91 - yog waq+pAeXP ) W= Vg (10)

0P _ 119/ _Qdp_ (_9) - _lop

5 = Lewaq Vg pAexp 7 ) J = Vg (11)
oy/dt = —3Q/dqg, dx/dg = vy, 0= gy<g<q, =L, 120. (12)

By changing to an arbitrary time-dependent system, we obtain an extended system of differential equations
in which Eq. (12) can be used for constructing an adaptive grid after the form of Q is determined.

In the space £, initial and boundary conditions (9) have the form

T(q7 O) = TO’ p(qs O) = pO, T= O,

T ) To+ct, t<llc, 19p 0
,T) = ——— = ) = = s
70 T, > 1/, vag 7= o (13)
10T 19dp
—— = O’ —_— = O, = = l.
Vg vaq 7=

Since the boundaries of the physical domain are stationary, the boundary conditions for the supplementary
equation (12) correspond to a vanishing function Q:

0(4¢,7) = Q(qu T) = 0. (14)

Here, the function Q remains arbitrary. Its definition determines a specific form of the coordinate transfor-
mation used to control of the motion of grid nodes.

3. TRANSFORMATION FUNCTION Q@

In the general case, the coordinate transformation should be such that the solution gradients in the com-
putational space are much lower than those in the physical space. A proper choice of the transformation
function Q ensures that the motion of the nodes is consistent with the solution. This is one of the most
important principles in the dynamic adaptation method. If the motion of the nodes is not sufficiently fast,
then their condensation will not keep pace with the displacement of solution singularities, and the adapta-
tion efficiency will be lower. When the nodes move too fast, the solution will oscillate, or coupled oscilla-
tions of the grid and solution will develop, or the calculations will become globally unstable.

Generally, to compensate for the incomplete consistency of the required solution with the mechanism of
grid adaptation, coefficients are introduced into the transformation function, which are adjusted so as to
reduce the degree of inconsistency. At the same time, the use of adjusted coefficients in an adaptation
method is indicative of its imperfection.

To determine the necessary transformation function, we use the quasistationarity principle formulated in
[17]. It can be applied to determine the transformation functions that are free of adjustable parameters

[17, 18]. The quasistationarity principle is based on the assumption that there exists a time-dependent coor-
dinate system in which all processes are steady; i.e., the time derivatives of a solution vanish or are suffi-
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ciently small. Extending the quasistationarity principle to system (10)—(12), we suppose that there exists a
coordinate system in which d7/dt = dp/dt = 0. Then, (10)—(12) imply

QaT 10W (__Q) _
vog Wa —pAexp(-=| =0, (15)
Qdp ;. 1oJ (_9) _
w8q+Lewa + pAexp 7] = 0. (16)

Solving (15) and (16) for Q, we obtain the desired transformation function

¢ _( aaq gg 9q an(‘aq(p * reg)_l ¥ (%\%)(Le{gg* %—g‘)(]%w + T)‘ + reg)_l. (17)

The first summand in this formula is responsible for grid condensation, and the second one sets a finite limit
for the distance between two adjacent nodes. Since the solution is not monotone, we take the absolute values
of the first derivatives of density and temperature. The constant reg < 1 prevents the denominator from van-
ishing at the points where the spatial derivatives vanish.

To solve system (10)—(12) numerically, it should be represented in a strictly conservative form:

IYT) _ W a(QT) (_9)
3T " Tag 34 + YpAexp 7) (18)
owp) _ .9/ _9(Qp)_ (_9)
prals Leaq 394 ypAexp 7) (19)
oy/oT = -dQ/dq, dx/dg = V. (20)

4. MODIFICATION OF BOUNDARY CONDITIONS

To improve the efficiency of the dynamic adaptation, we modify boundary conditions (14) so that prob-
lem (18)—(20) is reformulated as a free-boundary problem [3, 20]. Since the combustion process is initiated
at the left boundary g = g, and the combustion wave propagates across a cold background toward the right
boundary g = g, it is reasonable to exclude the unperturbed region from the analysis by formulating bound-
ary conditions on the right boundary so that the starting problem is posed as a free-boundary problem. To
do this, we set a new boundary at an arbitrary point g, € (g, g;) such that g, > gy and ¢,, < g, and formulate

the corresponding boundary conditions as in [3, 20]:

T(q4, %) = To, P(g4:T) = Po» Q(gy,T) = u = qli_,n;:T\TJE' 21

Until the perturbation reaches the point g = g,,, the boundary remains at rest. Its motion begins when the

heat wave arrives and ceases when the wave reaches the point g = g;. In the final form, the boundary and
initial conditions for equations (18)—(20) are written as

T(q,0) =Ty, p(q,0) = po, W(g,0)=1, 1T=0,

To+ct, t<l/e, 19p
T ,T = —_—=— = Oy 91: = O, = = O,
(40, T) {T o> 1/e, Vig Q(4p, 7) q = 4o @2)

a®

aladT

T(q*a T) = TOy P(q*, T) = po, Q(q*’T) =u= hm T

-, = =1L,.
g—q, TWOq 1= 94 *

5. SIMULATION OF STABLE AND UNSTABLE COMBUSTION REGIMES

Studies of various combustion regimes are generally focused on the calculation of the normal propaga-
tion velocity u and the thermodiffusional structure of the flame front. The numerical analysis of flame front
propagation and structure concentration and temperature fields was performed by using both mathematical
models, (7)-(9) and (18)—(22), which are formulated in the stationary (x, f) and time-dependent (g, T) coor-
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T dinate systems, respectively. The combustion model (7)—
1.2 (9), formulated in the variables (x, ), was mainly used to
(a) compare the results and determine the efficiency of the
10k dynamic adaptation method. Equations (18)—(22) were
solved to determine the spatiotemporal distributions of
temperature T(x, 1), density p(x, ¢), the preheat-zone width
08F nlonl onlowl s 87(t) and the reaction-zone width 8,(z), as well as the flame
propagation velocity u(t).
0.6}
Differential models (7)—(9) and (18)—(22) were approx-
0.4k imated by difference schemes constructed by means of the
: integro-interpolation method [21]. In both models, sym-
0.2 | , metric conservative difference schemes with O(Az? + Ahi)
p and O(AT? + Ah; ) errors were used, where Az, Ah,, At, and
1.0r ®) Ahq are the integration steps in ¢, x, T, and g, respectively.
At the beginning of each calculation, a linear law of
temperature rise on the left boundary was assumed. As the
temperature on this boundary grows, the chemical reaction
ul ul 5] t s rate steeply increases. The heat released in the course of
0.5¢ the reaction induces a temperature gradient, which gives
rise to a rapidly increasing inward heat flux. As a result, the
combustion zone begins to move quickly toward the right
boundary. The regime of further propagation of the flame
front depends on the values of several parameters. In the
. . . , case of a gaseous medium, these parameters include the
W Lewis number Le. Combustion in condensed media for-
102 mally corresponds to Le = 0, the reaction zone structure
() depends only on the thermal diffusivity o.

Experimental [6, 21] and theoretical [7, 10] studies of
combustion in gaseous media have shown that, depending
on the relation between the coefficients Le and o, there
exist two qualitatively different regimes characterized by
stable or unstable propagation of the reaction front. In one
of them, with Le = D/a = 1, the one-dimensional combus-
tion process is stable. This regime is characterized by spa-

Bty ts tial profiles T(x, ¢) and p(x, ¢) that propagate with a con-
stant speed, while the flame front is plane and has a stable

10-2 L L L ' s thermodiffusional structure. In the other regime, when
0 1 2 3 4 5 o=(T,- Tyd(Inu)/dT, > o, where ., is a critical value,

* T, is the adiabatic temperature, and Le < 1, the so-called
one-dimensional thermodiffusional instability develops

(6, 10], and combustion proceeds in an oscillatory mode.

It was found that, in the case of a two-dimensional flame,
the conditions of thermodiffusional instability [7] are opposite: the flame is stable for Le < 1 and unstable

forLe > 1.

Steady combustion regime. As we mentioned above, steady combustion regimes correspond to Le = 1.
After the influence of the left boundary condition (heating wall) becomes small; i.e., starting from the
moment when equilibrium between the conductive heat flux from the reaction zone and the heat release due
to the chemical reaction is reached, the reaction zone starts moving rightwards with a constant speed. Com-
bustion proceeds in a steady regime, with typical profiles of temperature T(x), density p(x), and the function
Wy(x) showninFig. 1 forLe =1, 8 =18, and A = 10'°. Figure 2 shows the combustion rate u(z), preheat-zone
width 8.(t) and reaction-zone width d,(t) plotted for the same values of parameters. The trajectories of grid
nodes x,(¢) are illustrated by Fig. 3. Combustion at Le = 1, 6 = 18, A = 10!% is special in that the maximum
temperature equals the adiabatic combustion temperature: T, = T,(T, = Ty + ®/C,). The thermal front width

10!

100

107! 1

Fig. 1.
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Fig. 2. Fig. 3.

87(t) is equal to the diffusion front width 8,(z), 8(¢) = 8,(r), and their propagation speed is constant, u(t) =
const.

From a computational perspective, steady regimes are characterized by the existence of time-invariant
spatial zones of steep gradients of 7(x) and p(x) propagating from left to right with a constant speed. As the
zone of strong variation of the solution develops, the grid nodes are automatically redistributed, condensing
in the combustion zone. The values of the gradients determine the minimal spatial mesh size h, ;,. The
dynamics of variation of A, can be well characterized by the function y(x;) = h(x;)/h(g;) (see Fig. 1c), which
is the dimensionless step A, in the physical space defined as the ratio of a current mesh size to that at the
initial moment (¢ = 0, ;). Our computations have shown that the mesh size reduces by approximately ten
times in the combustion zone, whereas it increases by a factor of 2—5 in the rest of the domain (see Fig. 1c).
In the diagram of node motion, the domain of the most condensed trajectories corresponds to the position
of the combustion front (see Fig. 3). Using the results of numerical computations, we obtained the following
empirical formula for the combustion rate corresponding to a fixed value of T, and Le = 1:

_ 1.6./Aexp(—0.4086)
= 2 )

which approximates the results computed for different A and 8 within 5%.

Unstable combustion regimes. One of the most important factors of a substantial variation in the com-
bustion temperature is the instability of the flame front. In laminar combustion regimes, the thermodiffu-
sional instability develops when the concentration distribution is not similar to the temperature distribution,
i.e., when Le # 1. The thermodiffusional instability affects the structure of the flame, without inducing any
substantial gasdynamic perturbations. The instability becomes stronger as the deviation of the Lewis num-
ber from unity increases. As mentioned above, the main destabilizing factor leading to the development of
pulsation is the enthalpy excess in the reaction zone. The stabilizing factors include the amount of heat
released in the course of combustion and diffusion of mixture components. As either quantity decreases, the
pulsation intensity increases. The transition between the regimes corresponds to some critical values of Le
and a. The critical conditions for the change of regime have been analyzed in several studies [8-11]. It was
shown that, depending on the values of Le and ¢, the thermodiffusional instability can be either monotone
or oscillatory.

When Le > 1, combustion proceeds in an unstable regime of overheated reacting mixture with enthalpy
excess behind the front. As a consequence, the corresponding combustion temperature is higher than the
adiabatic one, T, > T, (see Fig. 4). The instability is monotone. The highest degree of overheating is
attained at initial moments, the subsequent process is characterized by a gradually decreasing propagation
velocity (see Fig. 6; in Figs. 4-7, Le = 10, 0 = 18, A = 10'%). Despite the enthalpy excess and the fact that
Tax > T, thermokinetic oscillations are not observed, because they develop only if the characteristic chem-
ical-reaction time is much shorter than the characteristic diffusion time (¢, < ¢p). Since the diffusion layer
is wider than the thermal layer (6,(¢) > 67(t)) when Le > 1 (see Fig. 6), the condition ¢, < #;, is violated and

U
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thermokinetic oscillations do not develop. From the computational viewpoint, combustion regimes with
Le > 1 are similar to the regime with Le = 1. As in the case considered above, the adaptive grid condenses
in the combustion zone (see Figs. 5, 7). However, the condensed grid is in the steeper front, as the fronts
have different widths. When Le > 1, the temperature profile T(x) has a greater slope (see Fig. 4).

In gasless combustion (Le = 0), the instability is of a purely thermal nature and is completely determined
by the temperature coefficient of the combustion rate o (see [9]): & = (T, — To)dInu/(dTy) > o... The explicit
expression for the temperature coefficient depends on the form of steady combustion law u(7,). For the
Arrhenius dependence of the chemical reaction rate (1), u ~ exp[-E/(2RT,)], the stability condition becomes

a=ET,- TO)/(ZRTz) < a, 0,=4.24 (see [8, 9]). The value of ¢, increases with the Lewis number

(4
(O<Le<1)[10]

Pulsation dynamics. Numerical simulations have shown that, when the Lewis number is close to unity
and Le < 1, the width of the zone of intense chemical reaction is approximately equal to that of the preheat
zone, 8,(x) < 87(x), and instability of the steady combustion is not observed. However, as the Lewis number
decreases, so does the diffusive flux into the combustion zone, and the role of destabilizing factors increases.
Marginal combustion instability manifests itself by decaying oscillations (see Fig. 8, where A = 10'°,
0 = 18). As the stability threshold is further exceeded, for example, through an substantial decrease in the
Lewis number Le <€ 1, the difference between the characteristic scales Sp(x) and &;(x) substantially
increases, which results in a substantial buildup of excess enthalpy. The excess of heat in the combustion
front leads to the onset of a pulsation with increasing amplitude and frequency (see Fig. 8). At certain values
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of Le and o, the oscillations become independent of the
heating wall and a self-sustained oscillatory combustion
regime develops in the system (see Fig. 8). The self-sus-
tained oscillatory combustion front propagates in a
sequence of periodically alternating steps of flashes and
depressions, which correspond to maximums and mini-
mums of temperature and velocity, respectively (see Fig.
8). In this regime, the velocity of the front propagation is
not constant and varies according to a certain law depend-
ing on the extent to which the oscillatory-instability
threshold is transcended, as determined by the values of
Le and .. When the instability is marginal, the combustion
rate oscillates almost sinusoidally about its steady value.
As the distance from the threshold increases with decreas-
ing Le for a constant ¢, the pattern of pulsation changes:
the oscillation amplitude and frequency increase, the flash
duration decreases, and the depression time grows.

Figure 9 shows the spatiotemporal distributions of tem-
perature and density obtained for Le = 0.3, A = 10'%, and
6 = 18. Flashes correspond to moments with odd sub-
scripts; depressions, to those with even subscripts. At the
moment of a flash, the temperature beyond the front
exceeds that of the steady adiabatic combustion. A tem-
perature peak in Fig. 9a corresponds to a peak of the com-
bustion rate (Fig. 10) and to minima of 8,(x) and 87(x).
High reaction rate results in fast combustion of a pre-
heated layer. As the preheat-zone width decreases, the spa-
tial gradients of T and p become steeper (see Figs. 9a, 9b),
which stimulates intense heat transfer from the reaction
zone and the onset of a depression stage. At the depression
stage, the preheated layer is restored by the heat coming
from the burned zone; as a consequence, the temperature
(and, therefore the combustion rate) beyond the front
decreases. By the end of the depression stage, a thick layer
of preheated reactant forms, which then burns in a flash
again. In the node motion diagram, the oscillation mani-
fests itself by periodic grid condensations (see Fig. 11).
The dynamics of the adaptive grid nodes are also charac-
terized by the spatial profiles of y plotted for several time
moments (see Fig. 12). The function y(x) characterizes
the variation of the mesh size i, represented by the ratio
of the current distance between adjacent nodes in the
physical space to that at r = 0. At the flash points, which
correspond to peaks of temperature and velocity, the grid
nodes are concentrated in the thermal and diffusion fronts
At these points, the diagrams of y(x) exhibit negative
spikes.

Computations showed that self-sustained oscillatory
combustion regimes exist in a relatively narrow ranges of
Le and o, and the oscillation period can be estimated as
t, ~ LeA~'exp(0). With further decrease in Le or increase

U
102

FLe=0.3

N

1.0

0.5

t4 t6 t8

o

0.8

0.2r

Fig. 9.

in o, the oscillatory regime breaks down, as its amplitude and frequency increase and the oscillation grad-
ually transforms into relaxation with an increasing duration of the depression stage and shorter flash dura-

tion (Fig. 13).

As the Lewis number approaches Le ~ 0.1, pulsation of a complex structure develops, with several veloc-
ity peaks observed during each period (see Fig. 13). The complex behavior of the solution predetermines a
complicated mechanism of grid adaptation in which the minimal mesh size is reduced by approximately
three orders of magnitude (i.e., the value of y drops to 10-3). The adaptation complexity is illustrated by the
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diagram of node motion shown in Fig. 14 for Le = 0.1, A = 10'°, § = 18, and the total number of nodes
N =30.

Finally, we note that pulsating regimes have been observed in a number of experimental studies [22, 23].

6. EFFICIENCY OF THE DYNAMIC ADAPTATION METHOD

The main advantage of adaptive grids is the possibility to perform computations on relatively coarse
grids. Let us use the numerical simulations of steady and unsteady regimes of single-stage combustion to
obtain quantitative estimates for the efficiency of the dynamic adaptation method. Quantitatively, the effi-
ciency of the method is characterized by the relative run p
time ¢, and the number n, of nodes employed. The values

of t, = t;/t, and n, = N;/N, were determined by comparing 10! :
the CPU time and number of nodes required in dynami- E
cally adaptive algorithms (z,, N,) and in those imple- k
mented on grids with stationary nodes (tf, Nf). As a mea- 100k

sure of efficiency, we considered the dependence of ¢, and
n, on the ratio &/L of flame width & to the size L of the
computational domain. The flame width and velocity
were varied by varying the values of Le and a(8). Itis -1k
obvious that the CPU time and the number of nodes g
increase with decreasing 6/L.

According to our computations, the minimal number
of nodes required to solve a typical combustion problem
on an adaptive grid is ~20-30. All subsequent computa-
tions on adaptive grids were performed with the same
number of nodes, N = 40, which proved to be sufficient
for conducting a numerical analysis in wide ranges of Le,
6, and A. The computational domain size L was set equal
to 10, and the number of nodes in stationary grids was
chosen so that the maximal error in velocity did not
exceed 1%. For steady combustion regimes, the required
accuracy was determined by analyzing the convergence
of flame propagation velocity on progressively con-
densed grids.

100¢

107'E

To determine the efficiency of grid adaptation under 10‘20 1 2 3 2
conditions of steady combustion, a series of computa- . N

tions was performed for constant values of A = 10® and
Le = 1 with an activation energy 6 varied from 4 to 17. Fig. 12.
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The computed results were compared with their counterparts obtained on a grid with fixed nodes. Figure 15
shows the time efficiency ¢, as a function of 8/L for regimes with Le = 1. As 6 was varied from 17 to 4, the
reaction-zone thickness decreased by two orders of magnitude. Accordingly, the ratio of reaction-zone
width to domain size 8,;,/L decreased from 0.2 to 2 x 103, The ratio of the required CPU time ¢, = L1,
increased from 0.8 to 18. In all computations, the number of nodes in the adaptive grid was held constant
(N, = 40), whereas the number of fixed increased from N;= 500 to 6000. Thus, in computing steady com-
bustion regimes, the efficiency n, = N,/N, of dynamic adaptation with respect to the required number of
nodes is varied from 10 to 150. The time efficiency of dynamic adaptation algorithms can be as high as
t, = 20. However, when the size of a combustion zone is comparable to the domain size, the time efficiency
of adaptive meshing noticeably decreases. Moreover, when /L = 0.2, algorithms implemented on grids with
fixed nodes become more advantageous (by ~20%).

The efficiency of dynamic adaptation in unsteady combustion regimes was analyzed for Le = 0. In
Fig. 15, the dashed curve represents the dependence 1,(8,,;,,/L), which characterizes the time efficiency of
dynamic adaptation for Le = 0. The neighborhood of 8/L =~ 2 x 10-3 in the graph of 1,(8,,,/L) corresponds
to the transition between a steady combustion regime (8 < 10) and an oscillatory regime (6 > 10). The time
efficiency of dynamic adaptation in the oscillatory regime (8/L > 2 x 1073, 6 > 0) noticeably decreases
because of the relatively frequent and substantial grid adjustments at the moments of flashes and depres-
sions. At these moments, the reaction-zone width changes by a factor of several tens or hundreds. Transition
to a steady regime (8/L < 2 x 1073, 0 < 10) is associated with an increase in the efficiency index ¢,(8,;,/L),
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which rapidly attains a value =30. The efficiency of grid adaptation with respect to the required number of
nodes is particularly well manifested in oscillatory regimes. In the examples discussed here, the parameter
n, = N;/N, reached values =500.

Note that these estimates were obtained for a computational domain of fixed size L = 10. As the domain
size is increased, the advantage of adaptive meshing in terms of time efficiency increases further, approxi-

mately as L9, where g = 0.4-0.5.

CONCLUSION

Experiments show [6, 22] that most industrial combustion systems make use of layer-by-layer regimes,
which are additionally complicated by turbulence and fuel-oxidizer mixing. However, both the laminar and
layer-by-layer combustion waves are driven by the thermodiffusional mechanism of propagation of chem-
ical reactions. The analysis presented in this paper is focused on typical steady and pulsating combustion
regimes and their characteristic features. The results obtained show that the dynamic adaptation method can
be successfully applied in numerical simulations of laminar combustion problems in wide ranges of Le and
0 characteristic of both steady and pulsating regimes. The method is quite efficient. Its application allows
one to reduce the number of nodes by 1-2.5 orders of magnitude and raise the time efficiency by 2-50 times,
which can be especially important for multidimensional simulations.
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