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Abstract. The three level operator finite difference schemes on non-
uniform on time grids in Hilbert spaces of finite dimension are consid-
ered. A priori estimates for uniform slability on the initial conditions are
received under natural assumptions on operalors and non uniform time
grids. The results obtained here are applied to study stability of the three
levels weighted schemes of second order approximation O (hz + ‘r,.) for
some hyperbolic and parabolic equations of the second order. It is cs-
sential to note that the schemes of raised order of approximation are
constructed here on standard stencils which are used in finite diflerence
approximation techniques.

1 Introduction

Contemporaneous computational methods of mathematical physics alongsxdc
with the traditional requirements, such as stability and conservativity, have to
satisfy also the adaptivity requirement. Application of adaptive grids first of all
means that one have to use non uniform grid instead of uniform one which is
adapted to behaviour of the singularities of the solution. It is known , that at
use of non-uniform grids the order of local approximation becomes lower. One
can increase the order of approximation by simple use of more extended stencils
or by considering more restricted classes of solutions of differential problem. Let
us to call attention to an another opportunity to increase accuracy expandmg
the approximation of initial differential equations from the points of a computa-
tional grid to some intermediate points of computational domain [1]. At preseni
computational methods on non-uniform spatial grids have been widely studied
for wide class of equations of mathematical physics with preservation of the
second order local approximation with respect to the spatial variable [1] —[6)
Nevertheless the theoretical aspects of the three-level schemes on non-uniform
time grids are less investigated [7,8].

This communication is devoted to investigation of the three level operator
finite difference schemes on non-uniform on time grids with the operators acting
in Hilbert spaces of finite dimension. The stability on initial conditions is proved
and also a priori estimations in grid energy norms arc obtained. Examples of the



three level finite diff( 1ice schemes of the second order of local approximations
'bn time and spatial variables for parabolic and hyperbolic equation of the second
order are presented. Especially we emphasize, that increase of the order of local
approximation on non-uniform grids is achieved without increases of a standard
stencil of the finite difference scheme.

2:- Three Level Operator Finite Difference Schemes

Let us consider real Hilbert space H of finite dimension of real valued functions
defined on non-uniform time grid '

(0, = {tn=tno1+ 7, n€1,2,...,No; to =0, tn, =T} = J{0,T} .

We designate as D(t), B(t), A : H — H linear operators in H. Let us
consider a Cauchy problem for homogeneous finite difference operator equation

Dy +By:+ Ay =0, yo=1uo, v1=u1, (1)

where ¥ = yn = y(tn) € H is the unknown function, and ug, u; € /1 are given
functions. Here and in the following index-economic notations are used:

=W —v0) /T Yt =(Uns1 = VUn)/Tat1, YE= (Un = Yn-1) /T,

- - » ' Ynt+1l — Yn—1
§=¥Yntts, T=Yn-1, T =05(m41+7), y;=_n‘r'n-_;'7T:1—‘ .

Let us designate as Hg,, where R = Rx > 0 a space with inner product
(¥,v)r., ¥,v € H, and with semi-norms ||y||%_ = (Rky,y). Let us suppose that

the operators entering in the scheme (1) satisfy the following conditions :
D(t)=D*(t)>0, B(t)>20, tew,, A=A">0, (2)

D(t+7)<D(t), <" B(t.) 205mu4 , 3)

Tn42 Tn4-1

where A(t) = A is a constant operator. Concernmg conditions (3) we shall make
some observations.

Remark 1. Usually in the theory of stability of the three level finite difference
schemes [1] with the variable operator D(t) its Lipschitz-continuity on variable
t is required. However, if one studies the stability , for example, of the weighted
three level scheme [2]

yi + Ay =0, yo=us, m=u, (4)

Y79 = g1 + (1 — 01 — 02) y + 027 (5
than this requirement implies undesirable requirement of quasi-uniformity of the
time grid

|Tn+1_Tn|SCOTr2u n=1121"'1N0_1 . (G)
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Remark 2. The second restriction from (3) Tn41/Tn+2 < Tn/Tn41 is not- rlgld
Really, let the steps of a grid are chosen satisfying the geometrical progressmm
law 7,41 = ¢7n. Then the given inequality is valid for any g = const > 0.

Before we formulate results, we shall give definition of stability of the finite
difference scheme ( 1) in case of the linear operators D, B, A.

Definition 1. The operator finite difference scheme (1) is called unconditionally
stable on initial conditions if there exist positive constants My > 0, My > 0
independent of T and ug € H,u; € H, such that for all sufficiently small 7}, <
70, n =1,2,..., Ny, the solution of the Cauchy problem (1) satisfies the esttmate

”yf,ﬂ.”?{ln + ”yﬂ”?tzn S Ml ”yt',llﬁhl + M2”y1”%21 N (7)

If the inequality (7) is valid for every 1, then the scheme is called absolutely
stable and when My =1, My =1 — uniformly stable.

Let us prove the following affirmation.

Theorem 1. Let us suppose that the conditions (2), (3) are valid. Theri.th'g_
finite difference scheme (1) is uniformly stable with respect to initia] conditions
and the following estimate is valid

Ventilbayy + Wil < lvadlld, + lnllh, (8)
where Ry, = 0,5(1 + 7 /Tn41)A.

Proof. Considering inner product of both parts of the equation (1) with 27%y,
and using the first condition from (4), one have

27" (Dyzzy ye) = 277 (Dyi;, 0,5 (ye + y7) + 0,577 y)
= [lyeld = lwellh + 7 lvzlld > lvensild.,, = lvenalb,
21 (Bye, ue) = 213 lyenll s, -

If the second condition from (3) is satisfied then one has inequality 7} /41 >
Tp11/Tn+2. Therefore using the last estimate one obtain '

27 (Ay,90) = 725 (lynsall = NyallR) — mmrimallyenly 2
> yns1lif,,, ~ lnllk, = 2mallyenlld s pya -

Summing these estimates and using the third condition from (3), one has the
following relation

1Vent1lp,,, + lynsilf,,, < lvinld, +lval.

which is valid for every n = 1,...,Ng — 1. This immediately implicates the
desired estimate (8). o
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Ezample 1. Let us consider weighted three level operator finite difference scheme
(4) Using the identities

¥ =y (01Tns1 — 02Tn) Yo + 2Ty (9)
this scheme can be reduced to its canonical form (1) with
D, = E + 1,024, B, = (01Tm+1 — 027Tn) A.
One can note that the conditions of the Theorem 1
Dpy1— Dy = 02 (Tn+1‘l‘n+1 — TaT, )A <0,
B, — 0,57,,+1A = (Th41{01 — 0,5) —To2) A2 0

are satisfied if

1
02Tn41Tnq) S 02TaTy, 01 2 5+ gz .

Tn+1
On the harmonic grid 7,41 = g7, the first of above inequalities for o > 0 is
satisfied on condensing grid with ¢ < 1, and for g2 < 0 this inequality is satisfied
on dilating grid. If o2 = 0, 01 = o, then the scheme (4) could be transformed to
the following form (with constant operator D,, = E)

Y+ Ay =0, yo=w, vi=u . (10)

Here ¥(*) = 0441 + (1 — 0)yn. As the Theorem 1 affirms, its solution satisfies
the a priori estimate

Mvenll? + Nvnlf, < Nveal® +allh,, n=12,...,No , (11)

(here still Ry, = 0,5(1 + Tn/Tn41)A, and A* = A > 0 — is constant operator) if

the conditions !

T T, T,

0> -+ —2g, —2 >l (12)
2 Tn+1 Tn+1 Tn+2

are satisfied.

Ezample 2. The second order of local apprezimation scheme on non-uniform
time grid. In rectangle Qpr = 2 x [0,T), @ ={z: 0<z <!}, 0<t < T let us
consider the first initial boundary value problem for one dimensional parabolic
equation

du 0 Ju
a—a‘(k(ﬂ?)a—z“), O<z<l, 0<tLT, (13)
w0, =u(l,) =0, t>0, u(z0)=uolx), 0<z<l, (i)

where 0 < ¢; < k(z) < ¢, €1,c2 = const. On uniform in space and time variable
grid
W=wy X0y, W= {zi=1h, 1=0,1,...,N, hN =1}
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S‘g{‘!\. X

let us approximate the differential problem (13), (14} by the following ﬁm
difference sheme {3

e

Yo + 05Ty = (afis),, T+ =Ta41 , (1 ).é

&)

Here

{43

a=a,-=0,5(k,-_1+k,-), ki=k($i)1 y=y?=y($i,tn) )

(ayz) (a,“y:’: i+1 a.y;‘,) /h, Yz,i = (y? e yln 1) /h .
It is easy to verify that at the node (zi,tnt1) the three level scheme (13), (16);
approximates differential problem with the second order, that is

Yt =~y — 0 OTnt1Ug; + (au’-‘“) =0 (h2 + 'r2 1)

C'O“,‘ R 'Zﬁ;;' i

?’:ff

R

o=
T

BaL o~
D ¥ 2la

The scheme (13) is one generalization of well known asymptotically stable sche me;
[3, p-309] at non-uniform time grid
3 1
YtV = (ayz), - it
The scheme (13), (16) could be transformed to operator finite difference scheme.
(1), by putting y =y = (¥7, 9%, .-, ¥h—1), (A¥)i = —(a¥z)z,i, i=1,..., N =
1, yo =yn =0, D, =0,5741FE, Bp = E+ 141 A. In this example the space
H = H}, consists in grid functions which are defined on the grid &, and which
are equal to zero on the boundary. Scalar product and norm are defined by_

expressmns

AN

1

(¥,v) Zhyzvu Iyl = V() -

The properties of the operator A are well investigated [3]. In particular, A* =
A > SE, § = 8c1 /12 Let’s check up the conditions of Theorem 1. It is obvious,
that D,, < D,y pri Tng1 < Ty Ba — 05741 = E + 0,57m414 > 0 for every
Tnt+1 > 0. Hence, the scheme (13), (16} is uniformly stable on initial data if

Tn4+1 T )
ol < = y  Tn+l LTn . (17)
Tn4-2 Tn+1 .

Let us note, that the conditions(17) are satisfied on harmonic grid m41 = g
with arbitrary 0 < ¢ < 1.

3 Finite Difference Schemes of Raised Order of
Approximation on Non-uniform on Time and Space
Grids

Suppose that in the domain Qr it is required to find continuous function u(z, t),
satisfying following initial boundary value problem o
%u 0%

a7 = A O<z<l, 0<t<T,
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g

n2

ou _
u(0,t) = u(l,t) =0, wu(z,0) = up(x), —a—t(a:,()) = To(zx) .
Let us consider next non-uniform spatial - time grid @ = &), X Wy:

.

$11={$i=$i_1+lli, i=1,2,...,N, z=0, zy=1}=

L2

A

iy = . g = 0’ = ,

g on | {zo zy =1}

Wr={tn =ta-1+m, n=12...,No, to=0, tn, =T} =
i

v = J{to=0, tng =T} .

g

:We approximate on this grid the diflerential problem by the finite difference one

i hy —h
e vi + g —vaz =iz (18)
vt =y =0, =1, y;=du, i=0,1,...,N. (19)

'L.et us note, that fg(z), =z € ﬁh, is chosen in such a way that the error of
approximation of the second initial condition has order O(7{):

tig(z) = To(z) + 0,511ug(z) .
'Here usual designations are used (1]:

h+ =”‘i+1! hzhi) y=y|n =y($i)tn); Yz = (y?_y;n—l)/h! y

HYzz = (¥z —yz) (R Y= = (y4+ —y) [+, Yt = Y(Tiz1,tn), h=05(hy +h) .

Let us show, that in supplementary node (%;,%,):

_ 1 hiv1 — h;
i =3 (Ticr+ @ik Tip) =i + ~'+13—‘ ,

1 T, T (20)
Zn = "(tn—l +tn+tn+l) =ty + Ria 2 B )

3 3

Jfith
Tnil — T
O1Tntt — 02Ty = il n (21)

3
ype finite difference scheme (18), (19) approximates the differential problem with
e second order O(h? + 722). For this purpose we shall rewrite the residual

&r
i
|
i

oy,0 hy —h
b =ug " - (ua‘ + *Tum) =i+,
01,0 8%u o%u hy—h '
1/)1 = u(ﬁl 2) _ w, '¢2 = 5?2-' — <UEE+ ‘Tuiii)

tere ¥ = u(%,8), T =z + (hy — h)/3, T =t + (14 — 7)/3. Let us note that an
advantage of the scheme (18)(19), (21) is that fact, that for uniform grids wp, wy
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e

{ A
(t.e. 74 =7, hy = h) this scheme reduces to the classical scheme of the order,
O(h? +72) on a uniform grid [3]. We proceed with the analysis of 11, 2. Using’
the identity (9) and the weight conditions (21), , we conclude, that for any grld
function v(z;, t,.) the following relation is valid B

ploren) =y ¢ E Tu: +opri g =v (2,8) + O (1) . (22)
Hence,
2 o 0%
Yr=93+0 (7%, ¢3=uii($i,t)—a—§ . (23)
T @
Using the Taylor series decomposition it is easy to show, that i
- 62u - %, - hig1 —h; 0% , -
VY3 = uzz (Ti,1n) — 2 (Ii,tn) =32 (zi,tn) + —1—~3———l'5;3' (zi,Tn) —

62 s (@E) O (R) =0 ()

(24) 7
By virtue of the next relations (which one can easy obtain with the help of the
Taylor’s formula)

h+3_ hvi,; =v (Ti; tn) +0 (ﬁ't?) ’

v(zi,ta) +

8%y - .
a—; = v (Ti, ta) = O (7°%)

one conclude, that the grid function 1, is an infinitesimal of the second order y’
that is.

3
]

o~ ‘m-« «3’;_-'-_ i

Py = ( + 7 ) . (25)

On the basis of the formulas (22) — (25) one conclude that finite difference ;

scheme (18), (19), (21) approximates the initial boundary value problem for the
wave equation on the standard 9-points stencil (see Fig. 1) with the second
order (for sufficiently smooth function u(z, t)):

Yv=0 (h? +T'2)

For further investigation of the finite difference scheme (18), (19) some known;-
formulas and identities are required: i

e

7+y y+y T4-—T TTy
= - L S 2%
1 + 1 4 yt 2 Yii » ( )
o
Y =y (ormy — 0am) g + —— Ty (27)
Yty Ty —T '
yo = _L._._t. + + y“ . \ (28)

t 2



(xi > t n-H)

(xi-l,tnu) (xi-H,th)
Tn+
(xi, )
(i1, tn) 2t (X, tn)
Tn
h; hi,
(i1, tn-1) i 1) = (Xiaty tn-1)
tydin-\
Fig. 1.

Let us introduce scalar products and norms of functions defined over a non-
uniform spatial grid:

N-~-1

=Y hwwi, P =@v)., @)= Zh vivi, vl = (3,9] -
i=1

Lemma 1 (First finite difference Green’s formula ). For any grid function
y(x), which is defined on non-uniform grid W), and vanish at £ =0 and at z = |
the next formula is valid

(y)vii). = (yi)vf] - R (29)
One has the following theorem.

Theorem 2. Let us suppose that

2c
[h/bllc ¢ ll-llc = “é@xl'l, Tnt1—Tn 2 \/—3"”’@ —hllg,n=1,...,No—-1,
TEW,

(30)
and 5 + +2
Tn+l + Tn n Tn4-1 n
o= o= 31
V(i +m)’ 2 6(Tapr +7a) (31)
Then the finite difference scheme (18), (19) of the second order of local approz-
imation O(h} + 7*2) is uniformly stable and one has the estimation

v (ta)

Izl + Y A MO (32)

where v(0%) (t,) = 0,51 4+ v™), VP = (V™! — ") /Thy1.
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Proof. Let us note that o}, of are defined with the formula (31) and satisfy-
the relation (21), which is necessary for increase the approximation order on!
a non-uniform grid. Let us multiply now the finite difference equation (18) by;
-27* h,yo s ~and sum at inner nodes of non-uniform space grid &y,. After apph—'

cation the formula (29) we obtain the energy identity:

. L he—h . P
2r (yh-i,y:i}—2r (——":—yﬁi,y:ﬁ> + 27 (yix‘ ’),yo__).=0. (33)

3 tzx
Applying identity (28), one finds the equality
- . 2 n— 2 - n 2 N
27 (yt-fi:ly‘;f] = [lviEll” = [l ) + 0,572 (T — ) [J95]] (34)

Using now formulas (26) (, 27) and condition of the second order approximations
(21),we obtain for y(?1:92) the following representation

1 T+ —7T
(01.02) — 2 ( (0,5) -(o.s)) + .
v 5 WO+ )+ e (35)

In deriving the formula (35) we used the property

o7 +0 = % . (36)
Let us note, that if the variable weight multipliers do not satisfly to equality
(36), then it is possible prove stability of the finite difference scheme (18),(19)
only on quasi-uniform in time grid (6). In this case the estimation of stability
will not carry uniform character, that is the constant M, = exp ¢oT, appearing
in definition 1 (see.( 7)) will be much more than unit. Taking into account,
that yo = (y©%) — 5(®8))/7* and using (35) for third term in (34) one can find
the following equality:

2
GV

y %Y (tn) Yo

tEZ

0,5 e Tn+l — T
[ i

37)
Using the algebraic inequality 2ab > —a? — b?, we shall estimate the last remain--
ing scalar product in(33):

- h,+ —h T +1
=27 ('3—?/{:‘:,1/ ) > e It T )P

(hy = R K
9 Tn4+l — Tn h,"y‘za‘:a': .

Substituting obtained estimations (34) (,37) (,38) in energy identity (33), we
come to recurrent relation

(38)

2
2 0,5 0,
]+ s @] < i)+ s e
from which immediately follows the estimation (32).  Cu-4 0
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