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The method of constructing dynamically adapting calculation grids for solving problems

with unstable (relaxational or oscillatory) type of solution behavior is presented. Stable and

15pulsed modes of laminar combustion in a wide range of values of the Lewis number and

activation energy are investigated using mathematical modeling. The efficiency of the

method as to the operation speed and the number of nodes used is estimated. Mathematical

modeling shows that application of dynamic adaptation makes it possible to reduce the

number of grid nodes by 1–2.5 orders and increase the operation speed by 2–50 times.

INTRODUCTION

Calculation methods, such as the combustion theory in general, are far from
being developed completely. Computational peculiarities of problems of laminar
combustion are due to the presence of physical-chemical processes with greatly
different typical times: a short time of a chemical reaction and a long time of thermal

25relaxation (the diffusion mechanism). Accordingly, a high rate of chemical trans-
formation of the material and a slow propagation of thermal perturbations and
diffusion mixing of the reacting mixture lead to formation of a narrow combustion
zone with large gradients of the temperature T and the density r. The combustion
front is usually initiated at one boundary and moves rapidly toward the opposite

30one. Numerical solution requires that a certain number of grid nodes should be
present in the reaction zone. These two circumstances prevent discretizing the spatial
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variables with a large step using grids with fixed nodes. When the ratios of the size L
of the region under investigation to the combustion zone typical thickness d are
large, the efficiency of computational algorithms using grids with fixed nodes be-

35comes much lower because of a large number of nodes to be used. Thus a conven-
tional grid with fixed nodes applied for solving a typical problem of unstable
combustion contains 3,000–5,000 nodes.

Experience in numerical modeling [1–7] shows that application of adapting
grids greatly enhances the efficiency of computational algorithms, which is mani-

40fested in considerably increased accuracy of solution with simultaneous reduction of
the number of nodes. They are of particular service in solving unstable problems
involving rapidly moving narrow zones with large derivatives of the solution. Such
problems include the problem of laminar flame propagation, in which, as has been
mentioned above, a high rate of chemical transformation of the reactant and a slow

45velocity of propagation of thermal perturbations in the mixture that has not yet
participated in the reaction result in formation of a narrow combustion zone with
large gradients of the temperature and the concentration.

The main objective of theoretical study of the combustion process is to de-
termine a normal velocity and mode of the flame propagation. Depending on the

50relation of a number of the thermophysical parameters of the medium, the flame
front is propagated in either the stable (steady) mode or the unstable (pulsed) mode.
Stable modes are characterized by a constant front propagation velocity and a stable
thermodiffusion structure of the flame. The appearance of thermodiffusion instabi-
lity is accompanied by violation of the similarity between the temperature and density

55distributions, and the front velocity may attain a complicated pulsed character.

NOMENCLATURE

A pre-exponent

A thermal conductivity coefficient

Cp heat capacity

D diffusion coefficient

E activation energy

H mass heat of combustion

K temperature coefficient of the com-

bustion velocity

K velocity coefficient

L domain spatial size

Le Lewis number

Q transformation function

Q computational space coordinate

R gas constant

T medium temperature

T physical time coordinate

X physical space coordinate

b heat release coefficient

dr; dT thickness of diffusion and heat action

zones

y dimensionless activation energy

r medium density

t computational time coordinate

F thermal release function

c transformation Jacobian

Oq;t computational space

O~xx;~tt physical space

Subscripts

0 signifies the initial magnitude of the

variable

f signifies value at free border

i signifies grid function in the ith

(integer) node

iþ 1=2 signifies grid function in the iþ 1
2th

(semi-integer) node

0;L signifies left and right boundary values

1, 2 signifies that variable belongs to the

first or second substance or reaction

Superscripts

s signifies iteration number

j signifies number of temporal layer

~ signifies that variable is dimensional
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A number of theoretical studies [8–11] have been devoted to finding the con-
ditions for thermal stability in combustion of gaseous media. However, numerical
modeling of unstable and self-oscillatory modes of combustion are still a rather hard
computational problem [8], which is manifested, in particular, in the necessity of

60using calculation grids with a very large number of nodes [11].
The dynamical adaptation method for solving unstable problems has been

suggested in [12, 13], and was found to be highly efficient in solving problems with
mobile boundaries and large gradients of solution. Application of this method makes
it possible to solve problems with automatic isolation of strong discontinuities, such

65as phase boundaries (interfaces) in Stephan multifront problems [14, 15] and shock
waves in gas dynamics [16]. In problems of the Burgers type, the application of
dynamic adaptation [17] has improved considerably the quality of difference schemes
at the expense of almost total elimination of the influence of their diffusion and
dissipative properties. Ultimately, this allowed reducing the number of the nodes

70used by 2–3 orders as compared to grids with fixed nodes. However, the dynamical
adaptation method, in which the transformation function is found from the quasi-
stationarity principle, has never been applied to solving problems whose solutions
are of oscillation type.

The aim of the present work is to extend the dynamical adaptation method to
75mathematical modeling of different stable, unstable, and self-oscillation modes of

laminar flame. In this way it will be possible to determine the efficiency of the method
as to its operation speed and the number of the nodes to be used.

MATHEMATICAL FORMULATION OF THE PROBLEM

We consider a model problem of flame front propagation in a homogeneous
80(as to temperature and density), motionless gaseous medium. It is assumed that the

chemical reaction wave is propagated at a subsonic velocity, the combustion process
is isobaric, and the transfer of heat and matter has a diffusion nature. The kinetic
energy of the gas is negligible as compared to the heat content. The total enthalpy of
the system is the sum of the thermal and chemical energies, which is constant under

85stationary conditions.

The Model of One-Stage Combustion

In the simplest case of one-stage combustion, the exothermic reaction thermal
release function F depends linearly on the medium density r and exponentially
(according to the Arrhenius law) on the temperature T:

Fð ~TT; ~rr1Þ ¼ h1~rr1k1e
�E1=R ~TT ð1Þ

where h is the mass heat of combustion, k is the velocity coefficient, E is the acti-
vation energy, and R is the gas constant.

In the adopted assumptions the laminar flame propagation problem in the
simplest formulation is described by the system of two differential equations of

95the parabolic type: the equations for thermal conductivity and diffusion with
constant coefficients of thermal conductivity a and diffusion D. In the physical space
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O~xx;~tt with the variables ~tt and ~xx in a dimensional form, the mathematical model has
the form:

q~rr1
qt

¼ D
q2~rr1
q~xx2

�
~FF1ð ~TT; r1Þ

h1
ð2Þ

Cpr0
q ~TT
q~tt

¼ l
q2 ~TT
q~xx2

þ ~FF1ð ~TT; r1Þ ð3Þ

0 ¼ ~xx0 � ~xx � ~xxL ¼ L t � 0

where L is the length of the region under consideration.
In the problem of laminar (layer-by-layer) combustion, or combustion in the

front, one of the most important factors affecting the flame front propagation
105mode is the ratio of the transfer coefficients: the diffusion coefficient D and the

thermal conductivity coefficient a. Depending on their relation (the D-to-a ratio is
referred to as the Lewis number, Le ¼ D=a), combustion has either a stationary
character, Le ¼ 1, when the total enthalpy is constant in the flame, or a pulse
character, Le 6¼ 1, when the sum of the thermal and chemical energies is not

110constant. The farther the Lewis number deviates from unity, the greater is the
destabilizing effect. The equality Le ¼ 1 corresponds formally to combustion of a
condensed substance.

The Model of Two-Stage Combustion

In the majority of cases, chemical reactions in flames proceed by a multistage
115scheme. With a multistage mechanism of chemical transformation the flame front

structure is much more complex than in the case of a one-stage reaction and is
determined by interaction of different stages. The peculiarity of a mathematical
description of flame in multistage reactions is that it is necessary to formulate and
solve differential equations for concentrations of the components that are absent in

120the initial and final states of the combustible mixture. Formally, the simplest scheme
of multistage combustion of the combustible mixture can be obtained by taking
into account two chemical reactions characterized by two heat release functions ~FF1

and ~FF2 [8]:

~FF1ð ~TT; ~rr1Þ ¼ h1~rr1k1 exp � E1

R ~TT

� �
~FF2ð ~TT; ~rr2Þ ¼ h2~rr2k2 exp � E2

R ~TT

� �
ð4Þ

125where the index 2 signifies that the values h2; ~rr2; k2;E2 refer to the second chemical
reaction.

The mathematical model of two-stage combustion with two chemical reactions
has the form:

q~rr1
q~tt

¼ D1
q2~rr1
q~xx2

�
~FF1ð ~TT; ~rr1Þ

h1
ð5Þ

4 V. I. MAZHUKIN ET AL.



q~rr2
q~tt

¼ D2
q2~rr2
q~xx2

�
~FF2ð ~TT; ~rr2Þ

h2
þ

~FF1ð ~TT; ~rr1Þ
h1

ð6Þ

Cpr0
q ~TT
q~tt

¼ l
q2 ~TT
q~xx2

þ ~FF1ð ~TT; ~rr1Þ þ ~FF2ð ~TT; ~rr2Þ ð7Þ

0 ¼ ~xx0 � ~xx � ~xxL ¼ L t � 0

where ~rr1 and ~rr2 are the densities of the first and second substances; D1;D2; l;Cp,
and ro are the coefficients of diffusion and thermal conductivity, the specific heat,

135and the initial density of the first substance; E1;E2; h1, and h2 are the activation
energies of the reactions and the mass heats of combustion; L is the length of the
region under consideration.

Initial and Boundary Conditions

In choosing the value of L it was taken into account that in a typical internal
140combustion engine a characteristic dimension of the combustion chamber is 5 cm.

In subsequent calculations the value of L was, as a rule, not greater than 10 cm,
though it is not the limitation of the method used.

A chemical reaction in a substance is generally initiated at one boundary with
the help of an external energy source and then the reaction front is propagated to-

145ward the opposite boundary. It is assumed that the energy source is a hot wall placed
at the origin, ~xx ¼ 0. Its temperature varies by the linear law from the initial temp-
erature ~TT0 up to the so-called adiabatic temperature of combustion
~TTa ¼ ~TT0 þ ðh1 þ h2Þ=Cp; ~TT0

~TT ~TTa.Q1 The substance flow at the left boundary is taken to
equal zero. These assumptions correspond to the following relations:

~xx ¼ 0 : ~TTðx0; tÞ ¼
~TT0 þ ct; t � 1

c

~TTa; t > 1
c

(
�D1

q~rr1ð0; ~ttÞ
q~xx

¼ �D2
q~rr2ð0; ~ttÞ

q~xx
¼ 0 ð8Þ

where c is a certain constant.
The opposite, right-hand end of the rod ~xx ¼ ~xxL is taken to be isolated in

thermal and diffusion respects:

~xx ¼ ~xxL : �l
q ~TTð~xxL; ~ttÞ

q~xx
¼ 0 �D1

q~rr1ð~xxL; ~ttÞ
q~xx

¼ �D2
q~rr2ð~xxL; ~ttÞ

q~xx
¼ 0 ð9Þ

155The initial value of temperature ~TTð0; ~ttÞ is chosen from the condition that the thermal
release velocity function ~FFð ~TT; ~rr1; ~rr2Þ at a given temperature ~TT0 is equal to zero. The
initial density ~rr1ð0; ~ttÞ is taken to equal the density of an unperturbed gas r0:

~tt ¼ 0 : ~TTð0; ~ttÞ ¼ ~TT0 ~rr1ð0; ~ttÞ ¼ r0 ð10Þ

DYNAMICALLY ADAPTING GRIDS FOR COMBUSTION 5



Dimensionless Variables

160The obtained differential models (3)–(10) are conveniently analyzed and solved
if they are written in a dimensionless form. To make the transition, the following
relations are used:

a ¼ l
Cpro

Le1 ¼
D1

a
Le2 ¼

D2

a
A1 ¼

k1L
2

a
A2 ¼

k2L
2

a

T ¼
~TTCp

h1 þ h2

b1 ¼
h1

h1 þ h2
b2 ¼

h2
h1 þ h2

b1 þ b2 ¼ 1 r1 ¼
~rr1
ro

r2 ¼
~rr2
ro

x ¼ ~xx

L
t ¼ a~tt

L2

y1 ¼
E1Cp

Rðh1 þ h2Þ
y2 ¼

E2Cp

Rðh1 þ h2Þ
FkðT; rkÞ ¼ bkrkAk exp � yk

T

� �

k ¼ 1; 2

The systems of equations (2)–(3) and (5)–(7) in dimensionless variables are

qr1
qt

¼ Le
q2r1
qx2

� r1A1 exp � y1
T

� �
¼ �Le

qJ1
qx

� F1ðT; r1Þ ð11Þ

qT
qt

¼ q2T
qx2

þ r1A1 exp � y1
T

� �
¼ � qW

qx
þ F1ðT; r1Þ ð12Þ

0 ¼ x0 � x � xL ¼ 1 t � 0

and

qr1
qt

¼ Le
q2r1
qx2

� r1A1 exp � y1
T

� �
¼ �Le

qJ1
qx

� b�1
1 F1ðT; r1Þ ð13Þ

qr2
qt

¼ Le
q2r2
qx2

� r2A2 exp � y2
T

� �
þ r1A1 exp � y1

T

� �

¼ �Le
qJ2
qx

� b�1
2 F2ðT;r2Þ þ b�1

1 F1ðT; r1Þ

ð14Þ

qT
qt

¼ q2T
qx2

þ b1r1A1 exp � y1
T

� �
þ b2r2A2 exp � y2

T

� �

¼ � qW
qx

þ F1ðT; r1Þ þ F2ðT; r2Þ ð15Þ

6 V. I. MAZHUKIN ET AL.



J1 ¼ � qr1
qx

J2 ¼ � qr2
qx

W ¼ � qT
qx

0 ¼ x0 � x � xL ¼ 1 t � 0

System (13)–(15) is written in the assumption of the equality of the diffusion coef-
175ficients of all the components of the combustible mixture D ¼ D1 ¼ D2. Accord-

ingly, the Lewis number is Le¼Le1¼Le2.
The boundary and initial conditions in dimensionless variables assume the form:

x ¼ 0 : Tðx0; tÞ ¼
T0 þ ct; t � 1

c

Ta; t > 1
c

(
J1ðx0; tÞ ¼ J2ðx0; tÞ ¼ 0 ð16Þ

x ¼ 1: J1ðxL; tÞ ¼ J2ðxL; tÞ ¼ WðxL; tÞ ¼ 0 ð17Þ

t ¼ 0 : Tðx; 0Þ ¼ T0 rðx; 0Þ ¼ r0 ð18Þ

In the equations obtained, the density r1 ranges from unity to zero. In the
absence of an external heat supply the value of dimensionless temperature T lies in
the interval T0 � T � Ta, where Ta ¼ 1þ T0. In the present study the chosen values
of the parameters correspond to combustion of hydrocarbon fuel in air, which is

185characterized by a sixfold increase of temperature [18]. Therefore the vale of T ¼ 0:2
is taken as an initial condition, which gives Ta=T0 ¼ 6.

THE METHOD OF DYNAMIC ADAPTATION

To solve numerically the mathematical models (11)–(12) and (13)–(14) under
the conditions (16)–(18), we apply the method of dynamic adaptation. The calcu-

190lation grid is constructed on the basis of transition to an arbitrary nonstationary
system of coordinates with the variables ðq; tÞ, the system of coordinates belonging
to a computational space Oq;t. The transformation of the coordinates is made with
the help of the sought solution. The inverse transformation equation that is a dif-
ferential equation in partial derivatives is composed in such a way that the node

195movement velocity depends on the dynamics of solving the equations describing the
physical processes involved.

Nonstationary Arbitrary System of Coordinates

The transition from the physical space Ox;t to the computational space Oq;t is
made by substitution of a general kind, x ¼ xðq; tÞ; t ¼ t, the substitution having an

200inverse transformation q ¼ jðq; tÞ; t ¼ t. The Jacobian of such transformation is the
function c ¼ qx=qq. The partial derivatives of the dependent variables are expressed
in the following way:

q
qt

¼ q
qt

þ qq
qt

q
qq

¼ q
qt

� qx
qt

1

c
q
qq

¼ q
qt

þQ

c
q
qq

q
qx

¼ qq
qx

q
qq

¼ 1

c
q
qq

q2

qx2
¼ qq

qx
q
qq

qq
qx

q
qq

¼ 1

c
q
qq

1

c
q
qq

DYNAMICALLY ADAPTING GRIDS FOR COMBUSTION 7



where qx=qt ¼ �Q is the velocity of the nonstationary coordinate system. In
205the new variables ðq; tÞ the systems of equations (11), (12), and (13)–(15) is written

in the form:

qr1
qt

¼ �Le
1

c
qJ1
qq

�Q1J1 � F1ðT; r1Þ ð19Þ

qT
qt

¼ � 1

c
qW
qq

�Q1Wþ F1ðT; r1Þ ð20Þ

qc
qt

¼ � qQ1

qq
qx
qq

¼ c ð21Þ

qr1
qt

¼ �Le
1

c
qJ1
qq

�Q2J1 � b�1
1 F1ðT; r1Þ ð22Þ

qr2
qt

¼ �Le
1

c
qJ2
qq

�Q2J2 � b�1
2 F2ðT;r2Þ þ b�1

1 F1ðT; r1Þ ð23Þ

qT
qt

¼ � 1

c
qW
qq

�Q2Wþ F1ðT;r1Þ þ F2ðT; r2Þ ð24Þ

qc
qt

¼ � qQ2

qq
0 ¼ q0 < q < qL ¼ 1 t � 0 ð25Þ

J1 ¼ � 1

c
qr1
qq

J2 ¼ � 1

c
qr2
qq

W ¼ � 1

c
qT
qq

215As a result of transition to the arbitrary nonstationary system of coordinates,
the initial systems of differential equations are supplemented by the inverse trans-
formation equations (21) and (25). After determining the particular form of the
functions Q1 and Q2, these equations are used to construct the adapting grids. Their
difference analog describes the grid node dynamics, and the functions Q1 and Q2

220control the movement of the grid nodes matching the sought solution dynamics.
Matching is achieved by the functional dependence of the functions Q1 and Q2 upon
the sought solution, i.e., upon the functions r1; r2;T. A correct choice of the
transformation function Q, provided the node movement is matched with the so-
lution, is the crucial point in the method of dynamic adaptation.

225Transformation Function Q

In the general case, transformation of the coordinates should be chosen in such
a way that in the computational space the derivatives in time should be much smaller
than those in the physical space [5, 17, 19]. In addition, the transformation function
Q must satisfy the requirement that the solution variation rate should be in a full

230agreement with the velocity at which the grid nodes move. When the grid nodes
move fast enough, their crowding can be unable to keep pace with movement of the
solution peculiarities, which can lead to reduction of the adaptation efficiency. If the

8 V. I. MAZHUKIN ET AL.



grid nodes move too fast, it could lead to either oscillations of the solution or related
oscillations of both the grid and the solution.

235To compensate incomplete agreement between the sought solution and the
mechanism of rearranging the grid, fitting coefficients are usually introduced; by trial
and error the coefficients can be chosen so that the inconsistency could be reduced.
At the same time, and presence of matching coefficients in the adaptation method is
an indication of its imperfection.

240To find the required transformation function we shall make use of the quasi-
stationarity principle formulated in [17]. The application of this principle makes it
possible to find transformation functions that are free from matching parameters.
The quasi-stationarity principle is based on the assumption that there exists such a
nonstationary system of coordinates in which all the processes proceed in a sta-

245tionary way, i.e., the solution temporal derivatives are either equal to zero or neg-
ligible. For the systems of equations (19)–(20) and (22)–(25) the application of the
quasi-stationarity principle amounts to fulfilling the condition

qT
qt

¼ qr1
qt

¼ qr2
qt

¼ 0 ð26Þ

By solving the systems of equations (19), (20), and (22)–(24), taking into account the
250condition of (26), with respect to Q1 and Q2, the sought transformation functions are

obtained:

Q1 ¼ �
1
c Le q

qq
qr1
qq

��� ���þ q
qq

qT
qq

��� ���� �
q
qq ðr1 þ TÞ
��� ���þ reg

�
q
qq

1
c

� �
� Le

qr1
qq

��� ���þ qT
qq

��� ���� �
q
qq ðr1 þ TÞ
��� ���þ reg

ð27Þ

Q2 ¼ �
Le q

qq
qr1
qq

��� ���þ q
qq

qr2
qq

��� ���� �
þ q

qq
qT
qq

��� ���h i
c q

qq ðr1 þ r2 þ TÞ
��� ���þ reg

�
q
qq

1
c

� �
Le

qr1
qq

��� ���þ qr2
qq

��� ���� �
þ qT

qq

��� ���h i
q
qq ðr1 þ r2 þ TÞ
��� ���þ reg

ð28Þ

The first terms in these formulas ensure crowding of the grid nodes. The second
255terms constrain up to a certain finite value two neighboring nodes from coming close

together and serve as a mechanism for automatically controlling the node movement,
preventing the node trajectories from intersecting. The factor q=qqð1=cÞ in the sec-
ond term, having been substituted in the equation qc=qt ¼ �qQ=qq, exerts a re-
pulsing action on the grid nodes. In the case of unconstrained approach of two

260neighboring ½ith and ðiþ 1Þst� nodes, the corresponding function ciþ1=2 tends to zero.
The value of the derivative q=qqð1=cÞ sharply increases. Accordingly, the repulsing
action of the function Q increases sharply as well, preventing the function c from
vanishing. Recall that the function c is the transformation Jacobian and, by the
condition of the transformation nondegeneracy, must not become equal to zero.

265Taking into account a nonmonotonic character of the solution, the first derivatives
of the density and temperature in formulas (27) and (28) are taken in moduli. reg � 1
is the constant that prevents the denominator from becoming equal to zero at the
points where the spatial derivatives vanish. In the computations the value of reg was
taken small enough reg=1074–1076 that it does not influence the adaptation.

DYNAMICALLY ADAPTING GRIDS FOR COMBUSTION 9



270Initial and Boundary Conditions in Variables and Their Modification

In the computational space the initial and boundary conditions (9), (10) take the
form:

q0 ¼ 0 : Tðq0; tÞ ¼
T0 þ ct; t � 1

c

Ta; t > 1
c

(
J1ðq0; tÞ ¼ J2ðq0; tÞ ¼ 0 ð29Þ

qL ¼ 1 : J1ðqL; tÞ ¼ 0 J2ðqL; tÞ ¼ 0 WðqL; tÞ ¼ 0 ð30Þ

t ¼ 0 : ðq; 0Þ ¼ T0 r1ðq; 0Þ ¼ r0 r2ðq; 0Þ ¼ 0 ð31Þ

For inverse transformation equations (21), (25) the boundary conditions are for-
mulated with account of the fact that the functions Q1;2 characterize the velocity at

280which any element moves in the physical space, and since the boundaries of the
region under consideration are stationary, the boundary conditions for inverse
transformation equations (21), (25) are written in the form:

Q1;2ðq0; tÞ ¼ Q1;2ðqL; tÞ ¼ 0 ð32Þ

In order to enhance the efficiency of the method of dynamic adaptation, the
285right-hand boundary condition in (32) is modified in such a way that differential

problems (19)–(21) and (22)–(25) should be represented in the form of problems with
a free boundary [20, 21]. Assuming that the combustion process is initiated at the
left-hand boundary q ¼ q0 and then the combustion wave is propagated across the
cold background toward the right-hand boundary q ¼ qL, it stands to reason to

290exclude the region untouched by perturbation from consideration. For this purpose,
at the right-hand boundary the appropriate boundary conditions are formulated,
representing the original problem in the form of a problem with a free boundary. To
this end, in the interval (q0; qL) we choose an arbitrary point qf 2 ðq0; qLÞ, so that
qf > qL and qf � qL, and consider it to be a new boundary with the boundary

295conditions [20, 21]:

q ¼ qf : Tðqf; tÞ ¼ T0; r1ðqf; tÞ ¼ r0; r2ðqf; tÞ ¼ 0

Q1;2ðqf; tÞ ¼ �u ¼ lim
q!qf

� l
CpT

1

c
qT
qq

ð33Þ

For so long as the perturbation reaches the point q ¼ qf, the boundary remains
stationary. Its movement begins with arrival of the heat wave and terminates on

300reaching the point q ¼ qL. In the final form the boundary and initial conditions for
equations (19)–(25) will be written in the form:

q0 ¼ 0 : Tðq0; tÞ ¼
T0 þ ct; t � 1

c

Ta; t > 1
c

(
J1ðq0; tÞ ¼ J2ðq0; tÞ ¼ Qðq0; tÞ ¼ 0

10 V. I. MAZHUKIN ET AL.



q ¼ qf : r1ðqf; tÞ ¼ r0; r2ðqf; tÞ ¼ 0;Tðqf; tÞ ¼ T0;Qðqf; tÞ ¼ lim
q!qf

� l
CpT

1

c
qT
qq

ð34Þ

t ¼ 0 : Tðq; 0Þ ¼ T0 r1ðq; 0Þ ¼ r0 r2ðq; 0Þ ¼ 0 cðq; 0Þ ¼ 1

305DIFFERENCE SCHEMES AND THEIR NUMERICAL REALIZATION

Difference Approximation of the Differential Model
in the Physical Space

To solve numerically the system of equations (19)–(21) and (22)–(25), they are
represented in a strictly divergent form. To this end, in the system (19)–(21), Eqs.

310(19) and (20) are multiplied by the value c and then are added to Eq. (21), the latter
being multiplied consecutively by r and T. The difference approximation of the
obtained systems of equations was performed with the help of the conservative finite-
difference schemes [22]. In the physical space Ox;t, a computational grid was in-
troduced with a set of nodes o numbered by the integer indices (xi; t

j) and semi-
315integer indices (xiþ1=2; t

j) with the constant step hx with respect to the spatial variable
x and the variable step Dtj with respect to the variable t:

o ¼
ðxi; tjÞ; ðxiþ1=2; t

jÞ; xiþ1 ¼ xi þ hx; xiþ1=2 ¼ xi þ 0:5h i ¼ 0; 1; . . . ;N� 1

tj ¼ tj þ Dtj j ¼ 0; 1; . . .

( )

The flow quantities Wj
i, J

j
i referred to the integer nodes, and the grid functions

Tj
iþ1=2; r

j
1;iþ1=2; r

j
2;iþ1=2;F

j
1;iþ1=2;F

j
2;iþ1=2 referred to semi-integer points.

320For the system of equations (13)–(15), the following family of conservative
difference schemes was used:

r jþ1
1;iþ1=2 ¼ r j

1;iþ1=2 � Le
Dt j

hx
ðJ1;iþ1 � J1;iÞs1 � Dt j b�1

1 F1;iþ1=2

� �s1 ð35Þ

r jþ1
2;iþ1=2 ¼ r j

2;iþ1=2 � Le
Dt j

hx
J2;iþ1 � J2;i
� �s2�Dt j b�1

2 F2;iþ1=2 � b�1
1 F1;iþ1=2

� �s2 ð36Þ

Tjþ1
iþ1=2 ¼ Tj

iþ1=2 �
Dt j

hx
Wiþ1 �Wið Þs3þDt j F1;iþ1=2 þ F2;iþ1=2

� �s3 ð37Þ

Wj
i ¼ �

Tj
iþ1=2 � Tj

i�1=2

hx
; J j

k ¼ �
r j
k;iþ1=2 � r j

k;i�1=2

hx
;F j

k;iþ1=2

¼ bkrk;iþ1=2Ak exp � yk
T j
iþ1=2

 !

where k ¼ 1; 2. Differential system (11), (12) was approximated by as similar
family, which can be derived if all parameters corresponding to the second reaction
are set to zero.
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Difference Approximation of the Differential Models
330in Computational Space

In computational space Oq;t, the computational grid with a set of nodes o was in-
troduced. The set of nodes was numbered with the help of integer i and semi-integer
iþ 1

2 indices. The grid was built with a constant step h with respect to the spatial
coordinate q and a variable step Dt j with respect to the variable t:

o ¼
ðqi; tjÞðqiþ1=2; tjÞ; qiþ1 ¼ qi þ h; qiþ1=2 ¼ qi þ 0:5h i ¼ 0; 1; . . . ;N� 1

tjþ1 ¼ tj þ Dt j ¼ 0; 1; . . .

( )

The flow quantities Wj
i; Qj

i; Jji, and the variable xji refer to the integer grid nodes
ðxi; tjÞ. The grid functions Tj

iþ1=2; rjiþ1=2; cj
iþ1=2; Fj

1;iþ1=2 Fj
2;iþ1=2 refer to the semi-

integer points ðxiþ1=2; tjÞ.
The divergent form of the system of differential equation (19)–(21) was ap-

340proximated by the family of conservative difference schemes:

ðcr1Þ
jþ1
iþ1=2 ¼ ðcr1Þ

j
iþ1=2 �

Dtj

h
LeðJ1;jþ1 � J1;jÞ þ ðQ1r1Þiþ1 � ðQ1r1Þi
� 	s1

� DtjðcF1Þs1

iþ1=2 ð38Þ

ðcTÞjþ1
iþ1=2 ¼ ðcTÞjiþ1=2 �

Dtj

h
Wiþ1 �Wi þ ðQ1TÞiþ1 � ðQ1TÞi
� 	s1þDtjðcF1Þs1

iþ1=2

ð39Þ

cjþ1
iþ1=2 ¼ cj

iþ1=2 �
Dtj

h
½Q1;iþ1 �Q1;i�s3 xjþ1

iþ1 ¼ xjþ1
i þ hcjþ1

iþ1=2 ð40Þ

The finite-difference approximation of the divergent form of the differential
345model (22)–(25) was made with the help of the conservative difference schemes:

ðcr1Þjþ1
iþ1=2 ¼ ðcr1Þjiþ1=2 �

Dtj

h
½LeðJ1;jþ1 � J1;jÞ þ ðQ1r1Þiþ1 � ðQ1r1Þi�

s1

� Dtjðb�1
1 cF1Þs1

iþ1=2 ð41Þ

ðcr2Þ
jþ1
iþ1=2 ¼ ðcr2Þ

j
iþ1=2 �

Dtj

h
½LeðJ2;iþ1 � J2;iÞ þ ðQ2r2Þiþ1 � ðQ2r2Þi�

s2

þ Dtj½b�1
1 ðcF1Þiþ1=2 � b�1

2 ðcF2Þiþ1=2�
s2 ð42Þ

ðcTÞjþ1
iþ1=2 ¼ ðcTÞjiþ1=2 �

Dtj

h
½Wiþ1 �Wi þ ðQ2r2Þiþ1 � ðQ2r2Þi�

s3

þ Dtj½ðcF1Þiþ1=2 þ ðcF2Þiþ1=2�
s3 ð43Þ
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cjþ1
iþ1=2 ¼ cj

iþ1=2 �
Dtj

h
½Q2iþ1 �Q2i�s4 ; xjþ1

iþ1 ¼ xjþ1
i þ hcjþ1

iþ1=2 ð44Þ

Fj
k;iþ1=2 ¼ bkrk;iþ1=2Ak exp � yk

Tj
iþ1=2

 !
; Wj

i ¼ �
Tj
iþ1=2 � Tj

i�1=2

h
;

Jjk ¼ �
rjk;iþ1=2 � rjk;i�1=2

h

where k ¼ 1; 2; f
ðsÞ
i ¼ sfjþ1

i þ ð1� sÞfji; 1 � s � 1, and s is the free parameter. By
choosing the parameter s, the degree of implicitness of the difference scheme and the

355approximation order are controlled. The values of s1 ¼ s2 ¼ s3 ¼ s4 ¼ 0 corre-
spond to the explicit difference scheme of the first approximation order with respect
to Dtj and the second approximation order with respect to h : O Dtþ h2

� �
. The

choice of the values s1 ¼ s2 ¼ s3 ¼ s4 ¼ 1 corresponds to a completely implicit
scheme, with the approximation order being O Dtþ h2

� �
. In the case of s1 ¼ s2 ¼

360s3 ¼ s4 ¼ 0:5, we obtain the only scheme with second order of approximation
OððDtÞ2 þ h2Þ.

For numerical computation the obtained difference schemes (35)–(37) and
(38)–(40), (41)–(44) were previously linearized using the Newton iteration method. In
transition from the jth temporal layer to the (jþ 1)st layer this method allows re-

365presenting the sought difference equation in the form:

Tjþ1
i ¼ Tj

i þ dTjþ1
i rjþ1

i ¼ rji þ drjþ1
i cjþ1

i ¼ cj
i þ dcjþ1

i

By writing difference schemes (35)–(37) and (38)–(40), (41)–(44) with respect to
the unknowns dTjþ1

i ; drjþ1
i ; dcjþ1

i , we obtain the linear ones at each sth iteration of
the system of algebraic equations. From the solutions of these equations the incre-

370ments of

dTS
i ; dr

S
i ; dc

S
i

and the values of

TSþ1
i ¼ TS

i þ dTSþ1
i ; rSþ1

i ¼ rSi þ drSþ1
i ;cSþ1

i ¼ cS
i þ dcSþ1

i

are found. The iteration procedure was terminated when the following condition was
375satisfied:

dfSþ1
i

�� �� ¼ fSþ1
i � fSi
�� �� � e1fSi þ e2 e1; e2 2 10�3�10�6

� 	
In all computations the integration step DtjðDtjÞ was chosen automatically by the
number of iterations. Comparison of the computation results obtained using the
implicit and symmetrical schemes showed that, with the same accuracy, the sym-

380metrical schemes with O½ðDtÞ2 þ h2� allowed integration with the step being 2–3
times greater.
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MODELING OF THE PROCESSES OF ONE-STAGE COMBUSTION

The main purpose of investigation of different combustion modes is to de-
termine the normal propagation velocity u and thermodiffusion structure of the

385flame front. To analyze numerically the thermoconcentrational structure of the
flame front and its propagation modes, we applied two mathematical models
formulated in variables of the stationary (x, t) (11)–(12), (13)–(15) and nonsta-
tionary (q, t) (19)–(21), (22)–(25) systems of coordinates, respectively. Combustion
models (11)–(12), (13)–(15) in (x, t) variables were used mainly to compare the results

390and determine the efficiency of the dynamic adaptation method. From the solution
of (35)–(37) we determined the spatial-temporal distributions of temperature T(x, t),
density r(x, t), thickness of the zones of heating dTðtÞ, and diffusion dr1ðtÞ, as well as
the flame front propagation velocity uðtÞ for one-stage combustion.

At the beginning of each computation the linear law of temperature growth
395at the left-hand boundary was adopted. As the temperature at this boundary

grows, the chemical reaction rate increases sharply. The heat released in the re-
action forms the temperature gradient that causes the heat flow directed inside the
rod to enhance sharply. As a result, the combustion zone starts moving rapidly
toward the right-hand boundary. The character of further propagation of the flame

400front depends on the values of several decisive parameters. For gaseous media such
parameters include the Lewis number Le, characterizing diffusive transport of the
gas that has not taken part in the reaction to the reaction zone, and the tem-
perature coefficient of combustion velocity k, characterizing the amount of ex-
cessive enthalpy in the front. Combustion of condensed media, which corresponds

405formally to Le¼ 0, is characterized by the absence of diffusive flows of the material
in the chemical reaction zone, and its structure depends only on the value of the
temperature coefficient k.

Depending on the Le–k ratio, there are two qualitatively different modes
characterized by either stable or unstable propagation of the flame front.

410Stationary Combustion Mode

Stationary combustion modes are realized at values of Le ’ 1. After the effect
of the left-hand boundary condition (the heating wall) has become small, i.e., since
the equilibrium between the conductive flow of heat from the reaction zone and heat
supply has been set up at the expense of the chemical reaction, the reaction zone

415starts moving to the right at a constant velocity. The stable combustion mode is set
up, for which the typical profiles of the temperature TðxÞ, the density rðxÞ, and the
function c are represented in Figure 1.

The characteristic features of stationary combustion ðLe ¼ 1Þ are a constant
front propagation velocity, Figure 2a, a similarity of the spatial profiles of tem-

420perature Tðx; tÞ and density rðx; tÞ, Figures 1a and 1b, and an approximate equality
of the zones of thermal and diffusion effects dTðtÞ � drðtÞ, Figure 2a. The tem-
perature maximum is in the front of combustion and coincides with the adiabatic
combustion temperature Tm ¼ TaðTa ¼ T0 þ F=cpÞ. Figure 2a also represents the
temporal dependence of the combustion velocity uðtÞ.

425For computation, the main peculiarity of stationary modes of combus-
tion is the presence of a practically permanent spatial zone with sharp gradients
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Figure 1. Profiles of temperature, density, and the function c at different instants of time for

Le ¼ 1; y ¼ 18; A ¼ 1010; N ¼ 40.
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TðxÞ and rðxÞ that is propagated from the left to the right at a constant velocity.
The appearance of the zone of strong variations of the solution leads to an automatic
rearrangement of the grid nodes, with the nodes concentrating in the combus-

430tion zone.
The sharpness of the gradients, in fact, determines the minimal spatial step

hx;min. The dynamics of spatial step variation are conveniently characterized with the
help of the function cðxÞ ¼ hxðtÞ=h, Figure 1c, which is a dimensionless spatial step
in the physical space. The function cðxÞ shows by what factor the grid step with

435respect to the spatial coordinate xðtÞ was changes as compared to the initial instant
of time ðt ¼ 0;cÞ. Calculation showed that in the combustion zone the spatial step
was reduced by the factor of 10, and in other regions it was enhanced by the factor of
2–5, Figure 1c. The trajectories of the moving grid nodes are presented in Figure 2b.
In the diagram x(t), Figure 2b, the combustion front position corresponds to the

440region of the densest crowding of the trajectories.

Figure 2. Front velocity U and thicknesses of both the combustion and chemical reaction zones dT; dr and
trajectories of moving nodes for Le ¼ 1; y ¼ 18; A ¼ 1010; N ¼ 40.
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Unstable Modes of Combustion

One of the most important factors causing the combustion temperature to
change is the instability of the flame front. In laminar modes of combustion the
thermodiffusion instability arises in the case of the inequality Le.Q2 1. The more the

445Lewis number deviates from unity, the greater is the destabilizing action. Transition
from one mode to the other occurs at certain critical values of the decisive para-
meters Le and K [10, 11]. Depending on the Le–K ratio, the thermodiffusion in-
stability may have either a monotonic or oscillatory character.

Monotonic instability. At Le� 1 an unstable mode of combustion is realized
450when the overheated combustible mixture has an excessive enthalpy behind the front

and the minimal enthalpy in the front. For example, at Le¼ 10 and a sufficiently
high value of the temperature coefficient of velocity K (the value of K is controlled
by choosing value of the activation energy y), the combustion mode is realized in
which the zone of diffusion action turns out to be significantly larger than that of

455heating dr1ðtÞ > dTðtÞ. Since the diffusion processes prevail, the chemical energy car-
rier is being carried away from the combustion zone and the total enthalpy in the
front turns out to be minimal. The combustion temperature behind the front turns
out to be higher than the adiabatic temperature, Tmax > Ta, Figure 3a. The maximal
overheating is achieved at the initial instants of time, Figure 3a, and then the process

460proceeds at a gradually decreasing rate. The instability attains a monotonic charac-
ter, which is in good agreement with the linear theory [8, 11].

As for calculation, the combustion modes with Le� 1 differ little from the
mode with Le¼ 1. As in the previous case, the adapting grid nodes get concentrated
in the front region of the greatest steepness. At Le� 1 the temperature profiles TðxÞ,

465Figure 3b, have the greatest steepness.

Oscillatory instability. The character of instability varies qualitatively in the
case of inverse relation of the transfer coefficients D� a, which corresponds to the
values 0 Le< 1.Q3 As the Lewis number decreases, the diffusion flow toward the com-
bustion zone also decreases and the thermal action zone becomes larger,

470dTðtÞ > dr1ðtÞ. When the condition K > Kc is fulfilled, the role of destabilizing fac-
tors is enhanced. In the case of combustion without gas (Le¼ 0), the instability is
determined entirely by the temperature coefficient of the combustion velocity K [9]:

K ¼ ðTa � T0Þ
d ln u

dT0
> Kc

An explicit expression of the temperature coefficient depends on the kind of the
475stationary law of combustion uðTÞ. In the case of the Arrhenius dependence of the

chemical reaction velocity (1) u 	 expð�E=2RTaÞ, the instability condition assumes
the form:

K ¼ ðTa � T0Þ
2RT 2

a

E < Kc; Kc ¼ 4:24

[9, 10]. As the Lewis number becomes greater (0 < Le < 1), the value of Kc

480increases [10].
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At first, instability of combustion is manifested in the forms of attenuating
oscillations. Farther and farther from the stability threshold, which is due to a sharp
decrease of the Lewis number Le� 1 or a significant growth of the coefficient K, the
discrepancy between the characteristic scales dr1ðtÞ and dTðtÞ becomes much greater,

485which gives rise to a considerable enthalpy excess in the front. A heat excess in the
combustion front results in the instability acquiring a marked oscillatory character.
The amplitude, the frequency, and the structure of oscillations vary with distance
from the stability threshold. At a fixed value of y and with an increasing Lewis
number, the amplitude and the frequency of oscillations are increased and the os-

490cillation structure assumes a form close to that of harmonic oscillation. Beginning
from certain values of Le and K, the oscillations no longer depend on the heating
wall and a self-oscillation mode of combustion is realized in the system (Figures 4
and 5).

Propagation of the combustion front in the oscillatory mode is a sequence of
495periodically alternating stages of bursts and depressions, which correspond to

maximums and minimums of the temperature and velocity, respectively (Figures 4
and 5).

Figure 3. Profiles of temperature, density, and function c for Le ¼ 10; y ¼ 18; A ¼ 1010; N ¼ 40.

18 V. I. MAZHUKIN ET AL.



The time instants with odd indices correspond to positions of bursts; those with
even indices, depressions. At an instant of burst the temperature behind the front

500exceeds that of stationary adiabatic combustion. In the diagram of moving nodes
these oscillations correspond to periodic crowding of the grid nodes (Figure 5b).

At the times of bursts, which correspond to maximal values of temperature
and velocity, the grid nodes are concentrated in the zones of thermal and diffusion
fronts, which is shown in the dependencies cðxÞ in the form of abrupt troughs. The

505temperature maximum in Figure 4a corresponds to the combustion velocity max-
imum in Figure 6a and the minimal values of dr1ðtÞ and dTðtÞ. A high velocity assists
fast burning of the heated layer. As the dimensions of the heated layer are reduced,
the spatial gradients T and r becomes steep, Figures 4a and 4b which encourages an
intense thermal transfer from the reaction zone and the onset of the depression stage.

Figure 4. Spatial distribution TðxÞ and rðxÞ at different instants of time t1 � t8 for

Le ¼ 0:3; A ¼ 1010; y ¼ 18; N ¼ 33.
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510At the depression stage the heated zone is recovered at the expense of the thermal
flow from the zone of the burnt material and, as a consequence, the temperature (and
accordingly, the velocity) behind the combustion front is lowered. By the end of the
depression stage a thick layer of the heated agent is formed, which bursts again.

Pulse dynamics. Calculations showed that self-oscillation combustion modes
515are realized within a narrow range of Le and K values. Farther and farther from the

self-oscillation threshold, as the Lewis number decreases or y1 increases, the pulse
structure is changed, At a fixed y1, a decrease in Le results in growth of the ampli-
tude and frequency of oscillations. An increase in y1, with a fixed Le, leads to growth
of the amplitude and period of oscillations. In both cases the burst duration is

520reduced and depression duration is increased. The oscillation period can be esti-
mated as proportional to Le 
 A�1

1 expðy1Þ.

Figure 5. Combustion front velocity and diagram of moving nodes for Le ¼ 0:3;A ¼ 1010; y ¼ 18;N ¼ 33.
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A further decrease in Le and an increase in K result in destruction of self-
oscillations. The amplitude and frequency of pulses are growing, and the oscillations
attain a more expressed relaxation character, when the depression stage duration is

525still further increased and the burst duration is reduced, Figure 6a. A decrease in the
Lewis number to values of Le � 0:1 results in pulses of a complex structure, when
several velocity peaks are observed within one period, Figure 5a. A complex char-
acter of the solution predetermines a complex mechanism of grid rearrangement
when the minimal spatial step is decreased by about three orders. The complexity of

530this rearrangement can be seen in the diagram of the moving nodes represented in
Figure 6b, which corresponds to the total number of nodes N ¼ 33.

The greatest difference between the zones of thermal and diffusion actions was
observed in combustion of condensed media for which Le¼ 0. In this case the

Figure 6. Combustion front velocity and diagram of moving nodes for Le ¼ 0:1;A ¼ 1010; y ¼ 18;N ¼ 33.
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thickness of dr1ðtÞ can be identified with the spatial dimensions of the chemical re-
535action zone, whose characteristic dimensions are much smaller that those of the

heated layer. The diffusion of the combustible mixture components is an additional
stabilizing factor, and the absence of the diffusion in the combustion zone of
condensed medium is responsible for the minimal resource of stability of their
combustion.

540In conclusion, it should be noted that layer-by-layer pulsing modes of propa-
gation of the reaction front were mainly observed experimentally in condensed
media [23].

MODELING OF PROCESSES OF TWO-STAGE COMBUSTION

Introducing the second chemical reaction into consideration complicates the
545general course of the process, which in this case is described by relations of ther-

mophysical and kinetic parameters of both reactions. Let us consider the effect of the
second reaction on the flame front stability.

Stable Modes

The appearance of the second reaction is manifested in the first place in var-
550iation of the flame front structure. The heat content in the front is determined by the

relation of the spatial scales of the three zones: the thermal zone dT and two diffusion
zones dr1 and dr1 . As shown by calculations, the stable modes of the flame front
propagation can be realized under the conditions when the thickness of one diffusion
zone is greater and that of the second diffusion zone is smaller than the size of the

555thermal zone. As in the one-stage variant, stable modes are realized at Le ’ 1.
Figures 9a and 9b represent characteristic distributions of density r1ðxÞ; r2ðxÞ,

temperature TðxÞ, and the function c for two instants of time. One can see that the
interaction of the zones of thermal and diffusion actions has a complicated nature,
however, in the course of time a stable relation dr1ðtÞ < dTðtÞ < dr2ðtÞ, is set up,

560which corresponds to a constant value of the velocity uðtÞ.
In general, the influence of the second reaction in the stationary case Le ’ 1 is

manifested in slowing down the combustion process and decreasing the flame front
propagation velocity. The zone of stable combustion by the Lewis number becomes
much wider than that in the one-stage variant. The oscillation threshold for two

565chemical reactions is shifted toward smaller values of Le. Calculations showed that,
at fixed values of the parameters for the first reaction in the two-stage case, it may be
that the oscillations do not arise, although they were present in the one-stage case.

The distributions of the function c and the trajectories of moving nodes xðtÞ
represented in Figures 7b and 8b indicates that the majority of the grid nodes are

570concentrated in the combustion zone in proportion to the solution gradients.

Unstable Modes

The reasons and conditions for appearance of oscillation instability at Le< 1
in the two-stage combustion do not differ qualitatively from those of the one-
stage process. The main reason for oscillations to appear is the presence of excessive
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575enthalpy in the front, which arises when the relations dTðtÞ > dr1ðtÞ and dr2ðtÞ are
executed. Monotonic instability appears when the size of the diffusion action zone
significantly exceeds the size of the heating zone dr1ðtÞ; dr2ðtÞ � dTðtÞ.

The pulse structure in the two-stage combustion becomes even more complex.
In the case of the one-stage pulsing mode there were double bursts, whereas in the

580two-stage variant four velocity peaks are observed within one period, Figures 8a and
8b. A similar complex evolution occurs in the combustion zone, Figure 8c, where, in
the mode of oscillation instability, the relation dTðtÞ > dr1ðtÞ; dr2ðtÞ must be fulfilled.
In this case the spatial distribution of temperature may contain two local maximums:
in the front and at the trailing edge of r2. The amplitude, frequency, and structure of

585pulses depend strongly on the values of the kinetic coefficients of the second reaction,
A2 and r2. Thus an increase in the parameter y2 by unity leads to a sharp increase in
the number of bursts during the period 8–9. As for computation, the introduction of
the second chemical reaction in unstable modes does not lead to any serious com-
plications, although the number of the grid nodes N � 80 is increased. Figure 9b

590represents the node trajectories corresponding to the case of a strong instability,
while Figure 9a shows trajectories for the stable case. In the instable regime the grid
nodes are crowded in the combustion zone where there are two regions of strong
variation in the solution. The former is determined by the position of the fronts

Figure 7. Spatial profiles of temperature T, densities r1; r2, and function c at two instants of time,

t1 ¼ 5� 10�3 and t2 ¼ 13 for Le ¼ 1; y1 ¼ y2 ¼ 4; A1 ¼ 107; A2 ¼ 106; N ¼ 40.
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Figure 8. Profile of velocity with its increased fragment and structure of the combustion zones dr1dr2,
and dT at Le ¼ 0:1; y1 ¼ 17; y2 ¼ 23;A1 ¼ 2� 1010;A2 ¼ 2� 109, N ¼ 80.
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T; r1, and r2, which are almost coinciding. The latter is determined the trailing edge
595of the density r2.

EFFICIENCY OF THE DYNAMIC ADAPTATION METHOD

The principal advantage of adapting grids is the possibility of making calcu-
lations using a small number of nodes. As an example of mathematical modeling of
stationary and nonstationary modes of one-stage combustion, we obtained a

600quantitative evaluation of the efficiency of the method of dynamic adaptation. In
quantitative terms, the efficiency of this method was characterized by two factors: the
operation speed te and the number of the nodes used ne. The factors te and ne were
determined by comparing the processor time expenditure te ¼ tf=ta and the number
of the nodes used ne ¼ Nf=Na in the algorithms using dynamic adaptation ta;Na and

605the algorithms using the grids with fixed numbers of nodes tf;Nf. The dependence of
te and ne on the ratio of the flame front thickness d to the size of the computation
region L; d=L, was considered as a measure of efficiency. The thickness and velocity

Figure 9. Trajectories of moving nodes at Le ¼ 1; y1 ¼ y2 ¼ 4;A1 ¼ 107;A2 ¼ 106;N ¼ 40 and Le ¼ 0:1;

y1 ¼ 17; y2 ¼ 24;A1 ¼ 2� 1010;A2 ¼ 2� 109;N ¼ 80.
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of the flame front were easy to vary by varying the values of Le and aðyÞ. It is evident
that as the value of d=L decreases, the expenditure of computation time and the

610number of nodes increase.
Calculations showed that the minimal number of nodes necessary for solving

typical problems of combustion using adapting mashes is 	20–30. All subsequent
calculations using adapting nodes were performed with the same number of nodes,
N¼ 40. This number was sufficient to make calculations within a wide range of

615varying parameters Le; y, and A. The calculation region size L was taken to equal 10;
the number of nodes in the grids with fixed nodes was chosen so that the maximum
error in velocity was no greater than 1%. In stationary modes of combustion the
required accuracy was determined by converging values of the flame propagation
velocity on the consistently crowding grids.

620To determine the efficiency of adapting grids under conditions of stationary
combustion, a series of calculations was performed for fixed values of A ¼ 108 and
Le¼ 1 and activation energy y varying in the range 4–17. The results of calculations
were compared with similar results obtained using the grid with fixed nodes. For the
modes with Le¼ 1, Figure 10 represents the dependence of the operation speed factor

625te on the ratio d=L. When y varies from 17 to 4, the thickness of the chemical reaction
zone is two orders of magnitude smaller. Accordingly, the ratio of the size of the
reaction zone to the region size dmin=L decreases from 0.2 to 26107 3. The ratio of
the processor time expenditure, te ¼ tf=ta, increases from 0.8 to 18. In all the calcu-
lations the number of nodes of the adapting grid was constant, Na ¼ 40, and for the

630fixed-node grid the number of nodes increased fromNf ¼ 500 toNf ¼ 6; 000. Thus, in
computations of stationary combustion modes the efficiency factor ne ¼ Nf=Na of
the dynamic adaptation algorithms lies in the range of 10–150 with respect to the
number of nodes used. The maximum operation speed efficiency for the dynamic

Figure 10. Operation speed efficiency of dynamically adapting algorithms at Le ¼ 1 and Le ¼ 0.
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adaptation algorithms is as high as teQ2 20. However, if the dimensions of the
635combustion zone are comparable with those of the region under examination,

the operation speed efficiency of the dynamic adaptation grids is noticeably
reduced. When the relation d=L � 0:2, the algorithm with the fixed grid is faster by
about 20%.

The efficiency of the dynamic adaptation method as applied to the nonsta-
640tionary combustion mode was investigated at Le ¼ 0. In Figure 10 the dashed curve

represents the dependence teðdmin=LÞ characterizing the operation speed efficiency of
the dynamic adaptation for Le ¼ 0. The region of d=L � 2� 10�3 corresponds in the
plot to the transition from the stationary combustion mode ðy � 10Þ to the oscil-
lation mode ðy > 10Þ. The operation speed efficiency of the dynamic adaptation

645method as applied to the oscillating mode of combustion ðd=L > 2� 10�3; y > 0Þ is
noticeably reduced due to relatively frequent and significant rearrangement of the
grid at the instants when bursts or depressions occur. At these instants the reaction
zone dimensions vary by tens or hundreds of times. At the transition to the sta-
tionary mode ðd=L < 2� 10�3; y � 10Þ the efficiency index teðdmin=LÞ rises rapidly,

650reaching the valueQ4 30. In oscillatory modes the high efficiency of adapting grids as
for the number of the nodes used becomes particularly noticeable. The value of the
index ne ¼ Nf=Na in the variants under study is as high asQ4 500.

It should be noted that the given estimations were obtained at fixed dimensions
of the calculation region L ¼ 10. As the region increases, the operation speed effi-

655ciency of the adapting grid becomes even higher. Its growth is proportional to about
Lð0:4�0:5Þ.

CONCLUSION

A method of dynamic adaptation is proposed in which the calculation grid is
constructed on the differential level. The method is based on the idea of transition to

660an arbitrary nonstationary system of coordinates. The transformation of the co-
ordinated is performed automatically with the help of the sought solution. Finding
the solution and constructing the adapting grid are carried out using the numerical
solution of the extended differential model.

The required transformation function contains no fitting coefficients and is
665found from the assumption that the processes are stationary within a new nonsta-

tionary coordinate system (the quasi-stationarity principle). The transformation
function as found from the quasi-stationarity principle provides complete agreement
between evolution of the sought solution and dynamics of the adapting grid nodes,
thereby preventing their trajectories from intersecting.

670The method allows calculation of nonstationary temperature and con-
centration fields in problems with mass=energy sources in regions with mobile
boundaries.

Examples of calculations of stable and unstable (pulsing) modes of laminar
combustion are resented. In all the variants the application of the dynamically

675adapting algorithms made it possible to raise considerably the efficiency of calcu-
lations as compared to that of calculations made using fixed-node grids. Application
of the dynamic adaptation allowed the number of nodes to be reduced by 1–2.5
orders and the operation speed to be increased by 2–50 orders of magnitude.
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