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ABSTRACT

The method of dynamic adaptation is applied for the solution of a mullifront Stephan problem in an arhiltaiy .’-I) 
domain with explicit tracking of interphase fronts. Method of solution is based on die idea of dynamic adaptation of the 
computational grid by means of the transition to an arbitrary lion-stationary coordinate system. The results of 
computational experiments of the modeling of the proecsses of metal treatment by intense cnctgy flows are presented.
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1. INTRODUCTION

The processes of material removal by means of intense energy (lows (laser radiation, electron and ion beams) are the 
basis of many technological operations like cutting, drilling, surface modification and dimensional processing of 
condensed media. M. The necessity of clear understanding of the peculiarities of the involved processes stimulates 
fundamental research of the kinetics of fast phase transformations '* simultaneously with the processes of maerotransfer 
underlying the procedures of the technological treatment. Notice that theoretical investigations are especially urgent in 
the consideration of the pulsed treatment regimes.

The main difficulties of the mathematical modeling of the Stephan-type problems aie associated w ith the presence of 
the moving boundaries, what makes these problems essentially nonlinear. I'urlhei complications are due to the fact that 
the processes of the energy release and relaxation arc spatio-temporal iioii-uiiiformly sealed. Analytical solution of such 
problems is rather an exception due to significant simplifying assumptions.

In the problems of the pulsed material processing by means of intense ener gy (lows, the noiiequilibriiim behavior of the 
fast phase transitions may play the dominant role and therefore requires an explicit interphase front tracking mechanism 
and account of the related processes. The dominating position of the algorithms of the homogeneous computations in 
multidimensional problems is mainly due to the absence of the effective methods with the explicit moving phase front 
tracking.

This paper considers a method of numerical solution of multifront lion-stationary 2-1) Stephan problems with explicit 
front tracking in arbitrary domains. The solution is performed by means of the dynamic adaptation method 5 7, which is 
widely used for non-stalionary and spatially l-D problems of mathematical physics.

The basis of the dynamic adaptation method is the idea of the transition to an arbitrary lion-stationary coordinate system 
using the sought solution. In an arbitrary noil-stationary coordinate system the problem is described by the extended 
differential system of equations, one part of them describes the physical phenomenon and another pail determines the 
dynamics of the computational grid. The description of the motion of the computational grid in 2-1) non-stalionary 
problems is performed using two equations in partial differences.

This paper presents the results of the numerical experiments for the solution of the problems typical for the intense 
energy Hows material processing. The main peculiarities of the similar problems aie: the processes of melting- 
crystallization, evaporation, significant difference between the typical sizes of the considered domain and the enctgy 
release zone (focal spot).
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2. PROBLEM STATEMENT

Melting and crystallization of the pure materials in the simplest approximation is described by means of the classical 
Stephan problem, considering this process as a motion of the media with a strong discontinuity corresponding to the 
location of the phase front. The internal energy, density and thermophysical properties of the material (thermal capacity 
and conductivity) discontinuously change at the interphasc boundary. The mathematical statement of the 2-D Stephan 
problem is reduced to a quasi-linear heat conduction equation

OH _ 0Я'] (VV2 
dt  d x  d y

к = s, (,

I l k = cpp kT, (H\ )k = - М Г ) ~ .  ( " U  = - ЛЛ Г ) ~

(I)

in two domains £25(/) and £2f ( /)o f  an arbitrary domain £2^, separated by an unknown beforehand moving 

boundary ( / ) . Stephan differential condition holds at Г 1(-(/) , and continuous temperature is assumed:

Lmp sv'!( = w ; ' - w ' : ,  7; =т( =тт. < 2 )

Here superscripts n and r stand for the normal and tangential component, s- and ( signify the solid and liquid phase, 
Tm, Lm are the melting (crystallization) temperature and melting (crystallization) heat, V ^  is the velocity of the 

interphasc front. Boundary conditions are set at the boundary (5Qn, of the domain Q r(, = ( / ) u Q f (/) in the form

(3)

where W = 1У2) is the vector of the heat How, n is the outward perpendicular for d£2 , / i s  a function, given

a. Ш л,..

fhe inclusion of evaporation is performed in terms of a single-phase type of Stephan problem and is characterized lv  
the presence of the moving interphase front Г^Д/) liquid-vapor in the domain Q t r ( /)  = Q ( ( / ) u Q , ( / ) .  The

process of the developed surface evaporation is described by means of three conservation laws (mass, pul: e and 
energy) at this boundary

P k l)kv = P v ( Vkv - » ) . (4)

!\  + Pk ( Uku ) = I\, +  Pv ( u'ku ->< ) > (5)

л<- ~  = G " - ° Т Л -  Lv P k Vkv k = s J .  
on

(6)

and two additional relations, characterizing the kinetics of the phase transition and being determined using the Knudsen 
layer approximation K:

кu ( I k > Л / ), p v p t) (p sal, А /), (7)
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where G’ = ( G ’' ' , G r j  is the energy llow, u' ,̂ is the velocity of (lie evaporation front, /,, is 

the gas-dynamic velocity, Л/is the Mach number, />Sill is the density ('I the salinated vapor.

Ilic cvm|hiialion lii’iil, и

I lore

л / /////,., и,. -  ( r a(/;, j1'" •

Temperature and density of the vapor (7) functionally depend on the Maclt nuinlx i Л/, udinhulic f.vponrnl Y and 

additional parameter m

I ( I i ; Л/ ’ )r// ’

ехр(-/»-!) | л-,л’///(| i crl'(//;)) у м 2[т2 i 0.5 )'

If Л/is  known the value of hi is found from (be equation

F(M)(m2 I O.sf - nr  ( m 2 l 1.5 l n) -  <>.

where F(M) = N ЪуМ2 - 1

( y M 2 - \ f
a — 2Г  -0.5/r ' “ш/ - 1,

( l()i

(II)

2m I + erf (/л)

- i n2) + !г^2ш{ \ •)• erl (///

The value of Л/= I corresponds to / ’, = 0,6337j, />„ -0 ,3 2 6 у>ц ”. 
The magnitude p sat is determined using the equation of stale

where I\,„ = /{, exp К ' 1 i у

[ * л п ..
(12)

Here Ps,„ is the pressure of saturated vapor, / ’» is the atmospheric pressure, 7/, is the boiling temperature, R is ibc gas 
constant.

3. STATEMENT OF THE I’KOIILEM IN AN ARBITRARY NON-STA FIONA KY
COORDINATE SYSTEM

When solving multidimensional houndary problems in the domains with aibilraiy shape, it is mote convenient to use 
curvilinear coordinates for partial-difference approximation of differential equations. The type ol the cutvilincur system 
depends on the requirements and limitations for the computational grid from the solution of the particular problem. Hy 
convention, all the limitations can be divided in (wo classes. One of them is caused by the physical peculiarities of the 
considered processes, the other part of limitations is associated with the shape and geometrical parameters of  the 
domain. Both these classes arc olien interdependent. For the problems with an nibilrary shape ol the domain, the 
strictest limitations are associated with the approximation of the boundary conditions. Curvilinear coordinate systems

I’nie. nl Г.Г1Г Vnl. Г. 1V I И'1



to the borders coordinate lines deliver from additional inleipolation required for the approximation of the lioumlaiy 
conditions of any type.

7’ (/) , and movement velocities and of the phase fronts I 'vf( 0 .  I *,,(0 ■ I he algorithm ol mimetical
solution of real Stephan problems, describing (he processes of evaporation and melting - solidification Manually splits 
in two qualitatively different stages. The first one is dedicated to the determination of the tempetattire fields in a 
domain with one moving border 1 ^ ,(0 - 1' considers surface evaporation and covers the stages of the solid phase 
heating up to the equilibrium melting temperature Tm with further cooling to (he initial temperature /,, at the end of the 
solidification process. The temperature fields in the two subdomains £2t , i l (  and the velocity n ,r of the iuiciphaso 
boundary I 'lf (/) arc determined during the second stage.

Each of the stages has its own special features. The main feature of the fust stage is the possibility of the appearance ol 
high gradients near the zone of heating by a static external source. The peculiarities of Ihe second stage ate associated 
with Ihe interaction of the two moving iulcrpha.se fronts Гл(.(/) and Г<(Д/) and are determined by the behavior of the

velocities u"f and v'^, . These features should be taking into account during the construction of the computalional giid. 
The peculiarities of the first stage for a problem with an arbitrary shape of the domain can he taken into consideration 
during transition to curvilinear coordinates by means of a simple concentration of the cooidinale lines in the heating 
zone. Considering the specialties of the second stage the situation is more complicated. Besides Ihe problems, 
associated with the moving front, further complicity arises due to the change iu Ihe typical size of Ihe phases. At the 
onset of the melting the thickness of Ihe phase can be equal to several interatomic distances which is about l()A. flic 
thickness of a new phase can increase with time by 3-H) orders of magnitude. The same hut in Ihe icverse older can 
happen with the initial phase. In these situations, it can (urn out (hat the computational grids used at the beginning of 
Ihe computations, become ineffective in a period of time. The grids should he radically rcconsliucled iu older to 
continue the compulations. Considering the peculiarities mentioned above, the construction of effective computational 
grids in Stephan-type problems is possible only using adaptive approaches when the grid is dynamically connected with 
Ihe basic solution.

The method of dynamic adaptation yl , iu which the motion of any element of (lie physical space is (racked by means of 
an arbitrary non-staliouary curvilinear coordinate system, is suited in full measure to the mentioned requirements. The 
arbitrariness of the coordinate system means that the laws of motion of the coordinate system are not picdcfincd like, 
for example, when using Lagrangian coordinates, but are determined simultaneously with Ihe solution. As a result, the 
motion of the nodes of the grid depends on the evolution of the numerical solution of the physical problem. In 
particular, the dynamics of the nodes in the Stephan problem is associated with the velocity of the phase front 
propagation. The reverse transformation for the spatial variables in Ihe dynamic adaptation method is performed using 
two equations iu partial differences. Thus, the sought grid functions and grid nodes coordinates aie determined jointly 
from the solution of Ihe united differential model.

Consider a computational space , with an aibilrai'y non-slat ionary curvilinear coordinate system (c , //, i ). Assume 

that for each moment of time a biunique non-degenerate transformation exists ц = <f(.x,y,f), // //(.v, i ,/). r - r ,
mapping the physical domain with arbitrary shape U(,. onto a rectangle i l£ in the plane of cutvilincar cootdinales 

I be domain borders and inteipha.se trouts are coincident with the corresponding coordinate lines anil . 
remain unchanged with tinic.Tlic Jacobian for such tiniistbrnialion is lire function ./

The solution of the combined type of the Stephan problem consists in determination of Ihe temperature fields

/>./~l = /)
lv

4
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The mathematical formulation of the problem (l)-(6) in an arbitrary curvilinear coordinate system (£ ,/7, r )  takes the 
form:

d'l
d \ - { p W x+HQx) ^ -  + {pW2 +HQ2) ^

dx_ _ _Q\_
dr p  

dy _ Q2
Or p

, k = . s j ,

where

W, = - i e
¥

ду ОТ ду ОТ 
dt] drj

, 11' , = - ^
¥

( dx_0T_
drj dg dt* di]

with corresponding boundary conditions at the phase transition line

{^ n  = 4 s t ) ^ s t  

( £ ' / ) б Г *|. :
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dx

dg  ' 0*
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QL = -  Pv(u + Q L 1 a ).

l\  + (Qkо) / Pk = l\, + Pu (" + Q L/ Pk)

y-> /2__r ( лп

d y
IV\ +

dx

d t '
fV, y-'P  = G" + L0Q"ku 7/ = const,

h

“ 4  ~ | ^ 2  I « “,/2 =G" + ^ Й 'М, £ =

13)

(14)

(15)

(16)

(17)

(18)

(19)

( 2 0 )

Q‘lv are the material (lows through the boundaries Гх(, Г*(;, Qh Q, are arbitrary transformation functions,

dx dy dx dy 
dt*' <9£ ’ dt/ ’ dt)

, a  = r  d x *

\ d ’l j

r dy_'

Kd ’l j
and P  ■

f n \dx /  Л \
dy are metric coefficients of the transformation.

\ и ь J

4. TRANSFORM ATION FUNCTION Q

Like during the solution of other problems of mathematical physics, the main difficulties in the generation of the 
computational grid for the Stephan problem are related to the determination of the form of the transformation, mapping 
the physical space onto the computational one. Since the solution of the full Stephan problem consists of two 
qualitatively different stages, two types of transformations are used for the grid generation. The both transformations 
map a domain with arbitrary shape Q o f the physical space onto a rectangle П in the plane of curvilinear coordinates
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(£,//). At the same time, mutually orthogonal coordinate lines in the computational space form a uniform grid with 
rectangular cells. In the physical space these cells correspond to the ones formed by the intersection of the non- 
uniformly placed non-orthogonal coordinate lines. All the boundaries including the moving ones are coincident in the 
computational space with the coordinate lines.
The solution of the problem (l)-(3) at the heating-cooling stage without phase transitions does not differ from the 
solution of typieal noa-stationary problems of mathematical physics. To construct a static and non-reconfigurable grid 
we use a relatively simple and prevailing method of determination of the required transformation by means of the 
numerical solution of a special system of the elliptic equations of the Poisson type In. Thus, the solution of the first 
stage of the problem is perfonned on a static grid, constructed before the beginning of the computation. The nodes of 
the grid are concentrated in the heating zone by means of specially chosen functions I \  and P2 placed in the right-hand 
member of the Poisson equations.

The second stage is associated with the appearance and propagation of the phase front Г !(, ( / ) . Because of the usage of 
a non-stationary coordinate system, the line of the phase transition Г5(? (/) in the computation space remains stationary 
and coincident with the coordinate lines. The mass flow between two subdomains is calculated using the boundary 
conditions (8): Qsf = —p_tu ”f . In the physical space, the grids for the two subdomains Q s, Q,. are reconstructed at 
each time step depending on the magnitude and sign of the mass flow. The arbitrariness of the transformation functions 
Q\, Q2 means that all the points of the physical space may move with its own speed, and the computation grid can 
adapt according to any peculiarities of the sought solution. In the Stephan-type problems, it is reasonable to require that 
the nodes of the grid are semiuniformity distributed in every direction. To achieve this objective it is appropriate to 
chose the functions Qt, Q2 in the form:

Q \ =- P A
d~x

2
+ IX

(Tx_
дц2

. Ql = “ P A
d*v d"v
— V + A, — v

('ll

w here , D depend on the velocity of the nodes at the phase front and the degree of the domains transformation.

5. GRID GENERATION

(irid generation is aimed at establishing a relation between Ihe points (£ ,;/) of a regular computational domain Oc)t 

and the points (x, y) on the domain £2VJ, (Fig. I).

Stage 1. To construct a moving grid in an arbitrary 2-D domain, we use a method based on the solution of the elliptic 
equations 10
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( 21 )
d2f  | д 
дхг Оуj  = рЛ^>})> д̂  + дф  = р^ ^ ч )<

Неге У] (£ ,/;), Рг (£,ty) are llle functions to control the concentration of the internal nodes of the grid. 
The equations (21) are solved in the domain Qe,( , where they take the form

a d^x 
O f2 '

^ a d 2x d 2 x
’2^ T 7 7 ~  + y T ~ 2 +[J  )o^drj  dij  v '

/{ —  + Л
их

dg  ~ dij
= 0, ( 2 2 )

where

a
d2y
d C2

<a
- 2  P d 2y

d^dij

J A =

= 0, (23)
dt i2 v ’ l  dJf d l l )

d ( .v, у ) d x d y d x d у

d(g,  i}) д %д П d r j d g

The system of equations (22), (23) is closed by the specification of the boundary conditions determining distribution of 
the nodes at the boundary сЮ of the physical domain.

The concentration of the nodes in the source region is achieved by means of concentration at the border 3£2 and 

inside the domain . The nodes distribution at the boundary is performed using a two-parameter extension

function of Vinokur ". The functions /] and P, controlling the nodes concentration inside the domain Q rv, are 

chosen as in ref.

The differential equations (22)-(23) at the uniform grid in the domain are approximated by difference schemes with 
central differences. An iterative process of Newton type is used to solve the obtained equations.

At the second stage of the solution of the Stephan problem associated with the appearance of a new subdomain Clf and 
the propagation of the phase fronts Г,Д/) агц! ГД,Д/) the generation of the computation grid was performed by 
means of numerical solution of the non-stationary equations (14), (15) used in the form:

dx
dr

= A
d2x
d ?

+ D,
d~x

' W
dy_
dr

■ Dc — ^r + D
” d f  ”

d2y

d i f

The following formulas are used to determine the diffusion coefficients:

A/ =

\2

/°V n у

Г̂ 1
y Atn j

D.  =
( I Лl

Г д / П

1°\ L i  )

<1

where

Js(  >

AlПЛГк)
^t/,V,k+1)(/,A)> M

m = s->
Aht.U.k) ■ nun К O'.*)}'
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6. COMPUTATION EXPERIMENT

The developed methods were used to model the processes of melting and evaporation in 2-D statements. Many regimes 
of treatment were considered for the targets of various shape and material.

Figs. 2a -  2d show the results of the modeling of the laser treatment of an ellipsoidal lead target at the intensity 
G--105W/cnr and duration of a square pulse t t  = 0.3s. The grid in the domain Q r had 19x23 nodes total, 19*6 of

them were in the subdomain f i ( .

Figure 2a shows the initial computational grid with 2-D concentration of the cells in the region corresponding to the 
initial period of the heating of the target. Fig. 2b corresponds to the initial stage of melting with the appearance of a 
new subdoamin Q ( and semi-uniform nodes distribution. Fig. 2c corresponds to the stage of a developed melting and 
formation of a channel in the target. Fig. 2d shows the final stage of the treatment, which is characterized by almost 
complete melting of the target and formation of the deep channel with the depth-width ratio equal to 14. At such long 
period of treatment, the process relatively quick becomes stationary with constant values of the surface temperature
Гч ~ 2200“ C and velocity l)vf = ид„ = 0.03 m/s, Fig. 6.

Figs. 3 a, b show the results of the modeling of a similar treatment regime with Gaussian intensity distribution of a 
triangular shaped target. Fig. 3a corresponds to the initial stage of the healing with the significant concentration of the 
nodes, and Fig. 3b shows the final stage of the channel formation in the liquid phase.

a) b)

Figure 3a, b: A settlement grid in the initial and final moments o f time.

l or comparison, two treatment regimes were considered for an aluminum target. In the first one the parameters of the 
laser were equal to: G=105W7cnr and t=5?10'2 s in the second — G’-107W/cnr and r = 10'' s for a square pulse. The 
results of the modeling are shown at Figs. 4-7 a, b.

One can notice two peculiarities in these regimes. The first one is that the melting velocity will increase from 0,5w/.v

at (7 = 105 \V/ s 2 up to 30ni/s as the intensity increases on two order. The second feature is associated with the fact 
that the velocity of evaporation is exponential depends on temperature of an irradiated surface. Therefore, the end of 
the pulse results in a sharp stop of evaporation, while the process of melting continues rather longer due to the large 
amount of energy stored in the condensed phase. This fact results in approximately two times increase of the thickness
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Figure 4a, b: Time profile of the laser pulse.

T, К T,K

a) b)

Figure 5a, b: Time dependence of the surface temperature

v, m/s v, m/s

b)

Figure 6a, b: Meltingus/ and evaporation v kv velocities.

Figure 7a, b: Liquid phase thickness.
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7. CONCLUSION

The performed modeling indicates high efficiency of the method of dynamic adaptation for the considered problems of 
laser material processing.
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