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Modeling of formation of deep 2D chaunnels
in metal targets via laser irradiation
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YInstitute of Mathematic NAS of Belarus, 11 Surganov Str., Minsk 220072, Belarus

ABSTRACT

The method of dynamic adaptation is applied for the solution of a multifront Stephan problem in an arbitrary 2-1)
domain with explicit tracking of interphase fronts. Method of solution is based on the idea of dynamic adaptation of the
computational grid by means of the transition to an arbitrary non-stationary coordinate system. The results of
computational experiments of the modeling of the processes of metal treatment by intense encrgy flows are presented.
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L INTRODUCTION

The processes of material removal by means of intense energy flows (laser radiation, electron and ion heams) are the
basis of many technological operations like culling, drilling, surface modification and dimensional processing of
condensed media. . The necessity of clear understanding of the peculiarities of the involved processes stimulates
fundamental research of the kinetics of fast phase transformations * simultancously with the processes of macrotransfer
underlying the procedures of the techinological treatment. Notice that theoretical investigations are especially urgent in
the consideration of the pulsed treatment regimes.

The main difficultics ot the mathematical imodeling of the Stephan-type problems are associated with the presence of
the moving boundaries, what makes these problems essentially nonlinear. Further complications are due to the fact that
the processes ol the energy release and relaxation are spatio-temporal non-uniformly scaled. Analvtical sotution of such
problems is rather an exception due to significant simplifying assumptions.

In the problems of the pulsed material processing by means of intense energy [lows, the nonequilibrium behavior of the
fast phase transitions may play the dominant role and therefore requires an explicit interphase front tracking mechanism
and account of the related processes. ‘The dominating position of the algorithms of the homogencous computations in
multidimensioual problems is mainly due to the absence of the effective methods with the explicit moving phase fiont

tracking,.

This paper considers a method of numerical solution of multifront non-stationary 2-1 Stephan problems with explicit
front tracking in arbitrary domains. The solution is performed by means of the dynamic adaptation method *7, which is
widely used for non-stationary and spatially 1-1> problems of mathematical physics.

The basis of the dynamic adaptation method is the idea of the transition to an arbitrary non-stationary coordinate system
using the sought solution. In an arbitrary non-stationary coordinate system the problem is described by the extended
differential system of equations, one part of them deseribes the physical phenomenon and another pait determines the
dynamics of the computational grid. The description of the motion of the computational grid in 2-1) non-stationary
problems is performed using two equations in partial differences.

This paper presents the results of the numerical experiments for the solution of the problems typical for the intense
cnergy llows material processing. The main peculiarities of the similar problems are: the processes of melling-
crystallization, evaporation, significant difference between the typical sizes of the considered domain and the encrgy
release zone (focal spot).
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2. PROBLEM STATEMENT

Melting and crystallization of the pure materials in the simplest approximation is described by means of the classical
Stephan problem, considering this process as a motion of the media with a strong discontinuity corresponding to the
location of the phase front. The internal energy, density and thermophysical properties of the material (thermal capacity
and conductivity) discontinuously change at the interphase boundary. The mathematical statement of the 2-D Stephan

problem is reduced to a quasi-linear heat conduction equation

OH oW, oW,
=— - =+ g ) (1)
arox oy °f

AN GG

Hy =T, (M), = =4 (T )O.x dy

in two domains .(le(t) and K_).((t)oi an arbitrary domain €2, scparated by an unknown beforehand moving
boundary I',(r) . Stcphan differential condition holds at 17,,(#) , and continuous temperature is assumed:
n n .
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Here superscripts n and 7 stand for the normal and tangential component, s and ¢ signify the solid and liquid phase,
7;11’ L
interphase front. Boundary conditions are set at the boundary 0Q, of the domainQ = Q_ (t) vQ, (t) in the form

(u‘/,ii)

where W = (W , Wz) is the vector of the heat Tlow, 71 is the outward perpendicular for A2, /is a function, given

m are the melting (crystallization) temperature and melting (crystallization) heat, U, is the velocity of the

=f, (3)

e}

at ¢ 2"), .

The inclusion of evaporation is performed in terms of a single-phase type of Stephan problem and is characterized bv
the presence of the moving interphase front Ty, (1) liquid-vapor in the domain Q, (#)=Q (1)U Q,(r). The

process of the developed surface evaporation is described by means of three conservation laws (mass, pul: > and
energy) at this boundary

/7I\UI:IU :/)n(UI:IU _—“)’ (4)

P +p, (u,'('u) =P + /)U(u,"'u —u)b , (5)
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and two additional rclallons characterizing the kinctics of the phase transition and being determined usmg_, the Knudsen
layer approximation :

7;) :7;)(7‘/\’A/[)’ pl) :pl)(ps{"’A/l)’ (7)
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where G =( i",G') is the energy Now, v, is the velocity of the evaporation front, /1, i the evaporation heal, w is
the gas-dynamic velocity, A is the Mach number, z3,,, s the density ol the satuated vapor.
Here

/
A = ufu, = (pRT) ()

Temperature and density of the vapor (7) functionally depend on the Mach number A4, adiabatic exponent )7 ane

additional parameter m
i
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I Mis known the value of 1 is found from the equation
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The value of Af=1 corresponds to 7;, =0,6337,, g, =0,320p,, **
The magnitude p,,, is determined using the cquation of state
‘ ) I ,
Psae = l)ml/( R7l )’ where ,)ml = I:) eXpy - (12)
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Here P, is the pressure of saturated vapor, Py is the atmospheric pressure, 75 is the hoiling, tempetature, R is the pas
constant.

3. STATEMENT OF THE PROBLEM IN AN ARBITRARY NON-STATIONARY
COORDINATE SYSTEM

When solving multidimensional boundary problems in the domains with abitrary shape, it is more convenient to use
curvilinear coordinates for partial-difference approximation of differcatial equations. The type of the cwvilinear system
depends on the requirements and limitations for the computational grid from the solution of the patticular problem, By
convention, ail the limitations can be divided in two classes. One of them is caused by the physical peealianities of the
considered processes, the other part of limitations is associated with the shape and geometrical parameters of the
domain. Both these classcs are ofien interdependent. For the problems with an arbitrary shape of the domain, the
strictest limitations are associated with the approximation of the boundary conditions, Curvilincar comdinate systems
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hayving the domain borders coincident with the coordinate lines ave the most reasonable for such problems. Congrnent
1o the borders coordinate lines deliver from additional joterpolation required for the approximation of the hounday

conditions of any type.

The solution of the combined type of the Stephan problem cousists in determination of” the temperature fields
T, (I), ¢ (1) and movement velocities L, and vy, of the phase fronts (1), [y, (1) The algotithim of mnnerical
solution of real Stephan problems, describing the processes of evaporation and melting - solidilication naturally splits
in two qualitatively different stages. The first once is dedicated to the determination of” the temperature ficlds in a
domain with one moving border [7;,, (). It considers surface evaporation and covers the stages of the sofid phase

heating up to the cquilibrium melting temperature 7,, with further cooling to the initial temperature 74 at the end of the

solidification process. The temperature ficlds in the two subdomains €2, €2, and the velocity 0 of the interphase

boundary 1" (1) are determined during the second stage.

Each of the stages has its own special features. The main feature of the first stage is the possibility of the appearance ol
high gradients near the zone of heating by a static external source. The peculiarities of the sceond stage are associated
with the interaction of the two moving interphase fronts 17 ,(r) and 17, () and arc determined by the behavior of the

velocitics v;y and vy, . These features should be taking into account during the construction of the computational puid.
The peculiarities of the first stage for a problem with an arbitrary shape of the domain can he taken into consideration
during lransition to curvilinear coordinates by means of a simple concentration of the coordinate lines in the heating
zone. Considering the specialties of the sccond stage the situation is more complicated. Besides the problems,
associated with the moving front, further complicity arises due to the change in the typical size of the phases. At the
onset of the melting the thickness of the phase can be equal to several interatomic distances which is about 10A. The
thickness of a new phase can increase with time by 3+6 orders of magnitude. The same but in the ieverse order can
happen with the initial phase. In these situations, it can turn out that the computational grids used at the beginning, of
the computations, become ineflective in a period of time. The grids should he radically reconstiacted in order to
conlinue the computations. Considering the peculiarities mentioned above, the construction of effective computational
grids in Stephan-type problems is possible only using adaptive approaches when the grid is dynamically connected with

the basic solution.

The method of dynamic adaptation *”, in which the motion of any clement of the physical space is tracked by icans of
an arbitrary non-stationary curvilinear coordinate system, is suited in full measure to the mentioned requirements. The
arbitrariness of the coordinate system means that the laws of motion of the coordinate system are not predefined like,
for example, when using Lagrangian coordinates, but are determined simultancously with the solution. As a result, the
motion of the nodes of the grid depends on the evolution of the numerical solution of the physical problem. In
particular, the dynamics of the nodes in the Stephan problem is associated with the velocity of the phase front
propagation. The reverse transformation for the spatial variabies in the dynamic adaptation method is performed using
two cquations in partial differences. Thus, the sought grid functions and grid nodes coordinates are determined jointly
from the solution of the united differential model.

Consider a computational space €, , with an atbitrary non-stationary curvilincar coordinate system (&, ,0). Assume

that for eacli moment of time a biunigue non-degenerate transformation exists & = (x, y,1), 17+ px, ). =t

mapping the physical domain with arbitrary shape €, onto a rectangle Qg, W the plane of curvilinear coordinates
(&,17). The domain borders and interphase [ronts €, are coincident with the corresponding, coordinate lines and

remain unchanged with time. The Jacobian for such transformation is the function /
dxdy dxoy

-1
N (AR XN
TP\ aEay Tagag) !

90 Proc. of SPIE Vol. 5121




The mathematical formulation of the problem (1)-(6) in an arbitrary curvilinear coordinate system (SE, 77,r) takes the

form:
o(wH) @ ay ox
et = e— (P + HO ) — (oW, v HO; )— ¢ —
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e, O, are the material flows through the boundaries ", I'y,,, O, Q» are arbitrary transformation functions,

7x d 0’6 ay ox 0 0 0
‘ 2 e a:(_\.J ( y) nd f= (( rj [(yj are metric coefficients of the transformation.

o¢ ag

4. TRANSFORMATION FUNCTION @

on on

6§ 65 877 on’

Like during the solution of other problems of mathematical physics, the main difficulties in the generation of the
computational grid for the Stephan problem are related to the determination of the form of the transformation, mapping
the physical space onto the computational one. Since the solution of the full Stephan problem consists of two
qualitatively different stages, two types of transformations are used for the grid generation. The both transformations
map a domain with arbitrary shape € of the physical space onto a rectangle €2 in the plane of curvilinear coordinates
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(£,1). At the same time, mutually orthogonal coordinate lines in the computational space forin a uniform grid with
rectangular cells. In the physical space these cells correspond to the ones formed by the intersection of the non-
uniforinly placed non-orthogonal coordinate lines. All the boundaries including the imoving ones are coincident in the
computational space with the coordinate lines.

The solution of the problem (1)-(3) at the heating-cooling stage without phase transitions does not differ from the
solution of typical non-stationary problems of mathematical physics. To construct a static and non-reconfigurable grid
we use a relatively simple and prevailing method of determination of the required transformation by means of the
numerical solution of a special system of the elliptic equations of the Poisson type . Thus, the solution of the first
stage of the problem is performed on a static grid, constructed before the beginning of the computation. The nodes of
the grid are concentrated in the heating zone by means of specially chosen functions /| and P, placed in the right-hand
member of the Poisson equations.

The second stage is associated with the appearance and propagation of the phase front [", (7). Because of the usage of
a non-stationary coordinate system, the line of the phase transition I',(#) in the computation space remains stationary
and coincident with the coordinate lines. The mass flow between two subdomains is calculated using the boundary
conditions (8): (,; =—p,v,r. In the physical space, the grids for the two subdomains f_ls, Q, are reconstructed at
each time step depending on the magnitude and sign of the mass flow. The arbitrariness of the transformation functions
0,, ¢4, means that all the points of the physical space may move with its own speed, and the computation grid can

adapt according to any peculiaritics of the sought solution. In the Stephan-type problems, it is reasonable to require that
the nodes of the grid are scmi-uniformity distributed in every direction. To achieve this objective it is appropriate to

chose the functions (J;, (J, in the form:

Px % a*y v
OQ=-p| Dy —+D ——1, Oy =—p| D —=+ D, —= |,
f 5 o ? n an 2 3 6&_,2 N 0!]2

where 12, 1')|l depend on the velocity of the nodes at the phase front and the degree of the domains transformation.

5. GRID GENERATION

Grid generation is aimed at establishing a relation between the points (&,7) of a regular computational domain Qg,]

and the points (x, y) on the domain €2, (Fig. 1).

1Y 19
C . "
B 10 B C
Q
'l Dy A D'E
> 0.0 1.0

Figure 1.

Stage 1. To construct a moving grid in an arbitrary 2-D domain, we use a method bascd on the solution of the elliptic
. 0
equations '
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Here H (5,/}), TN (é‘,l;) are the functions to controt the concentration of the internal nodes of the grid.

ot 9
Tty

ox

The cquations (21) are solved in the domain QE,, , where they take the form

2 22 32, 3
o2 =2y (I )[1" *+pE J 0, (22)
o& oéon oy o0& an

(23)

i
=

2 2 2 5 ,
a2 ’2‘—2 0y +ya {»%(J") P,~a—y+[’2?—'l—
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where
1 Olor)_0xdy 0xdy
a(&m) a&an onoé

The system of equations (22), (23) is closed by the specification of the boundary conditions determining distribution of
the nodes at the boundary 0€2,, of the physical domain.

The concentration of the nodes in the source region is achieved by means of concentration at the border any and
inside the domain Q. . The nodes distribution at the boundary 00, .y 1s performed using a two-parameter extension

function of Vinokur ''. The functions P and P, controlling the nodes concentration inside the domain 2 are
| X

. T
chosen as in ref, ',

The differential equations (22)-(23) at the uniform grid in the domain are approximated by difference schemes with
central differences. An iterative process of Newton type is used to solve the obtained equations.

At the second stage of the solution of the Stephan problem associated with the appearance of a new subdomain Q, and
the propagation of the phasc fronts I',(¢) and I\, (f) the generation of the computation grid was performed by
means of numerical solution of the non-stationary equations (14), (15) used in the form: '

ox 62x &*x oy B ay 0%y

Y —D: 7 5 -
(‘)z_ 565 ’76772 az.. 5 6‘52 ]0’7._

The following formulas are used to determine the diffusion coefficients:

ONT 200
L,, A[,, 1 L§ Alg 1,
1)1] = 0 ] \f’ D‘ = 0 Al ] Use
L’I A 7 l’ Lg £ I:

where

Al ixy m=1¢
)i kLK) > .
Al,]‘(’-‘k) = Al.,‘,(i,k) = lnln{Aef.(i'l‘l.k)(i.k)’Ae(f,(i-—l,k)(i,k) } .

Al,l_(,._k_”(,._k), m=s,
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6. COMPUTATION EXPERIMENT

The developed methods were used to model the processes of melting and evaporation in 2-I statements. Many regimes
of treatment were considered for the targets of various shape and material.

Figs. 2a — 2d show the results of the modeling of the laser treatment of an ellipsoidal lead target at the intensity
G=10"W/cn® and duration of a square pulse T, = 0.3s. The grid in the domain Q , had 19x23 nodes total, 19%6 of

them were in the subdomain €, .

Figure 2a shows the initial computational grid with 2-D concentration of the cells in the region corresponding to the
initial period of the heating of the target. Fig. 2b corresponds to the initial stage of melting with the appearance of a
new subdoamin 2, and semi-uniform nodes distribution. Fig. 2c corresponds to the stage of a developed melting and
formation of a channel in the target. Fig. 2d shows the final stage of the treatment, which is characterized by almost
complete melting of the target and formation of the deep channel with the depth-width ratio equal to 4. At such long
period of treatment, the process relatively quick becomes stationary with constant values of the surface temperature

I =2200°C and velocity v, = vy, = 0.03 m/s, Fig. 6.
Figs. 3 a, b show the results of the modeling of a similar treatment regime with Gaussian intensity distribution of a

triangular shaped target. Fig. 3a corresponds to the initial stage of the heating with the significant concentration of the
nodes, and Fig. 3b shows the final stage of the channel formation in the liquid phase.

0.10 ¢ . 1=0.000 0.10 ¢ t=0.968

0.05+ 0054 //// / ) \\ -

N RN
y R 1 FEE FRERRN
0.00 4 RNy, m 0004 y llﬂﬂ‘l\}'&\\\\\\\\\ X, m
0.00 =G 0.10 0.00 e 0.10
a) b)

Figure 3a, b: A settlement grid in the initial and linal moments of time.

FFor comparison, two treatment regimes were considered for an aluminum target. In the first one the paramelters of the
laser were equal to: G=10°W/em® and =510 s in the second — G=10"W/em® and r=10" s for a square pulse. The
results of the modeling are shown at Figs. 4-7 a, b.

(ne can notice two peculiaritics in these regimes. The first one is that the melting velocity will increase from 0,5m/s

- 5 2 . N . . .
at G=10° W/.\' up to 30m/s as the intensity increases on two order. The second feature is associated with the fact

that the velocity of evaporation is exponential depends on temperalure of an irradiated surface. Therefore, the end of
the pulse results in a sharp stop of evaporation, while the process of melting continues rather longer due 10 the large
amount of energy stored in the condensed phase. This fact results in approximately two times increase of th: thickness
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Figure 4a, b: Time profile of the laser pulse.
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Figure 5a, b: Time dependence of the surface temperature
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Figure 6a, b: Meltingu; and evaporation vy, velocities.
h, cm s h, cm
0157 x{0
] 6.0
0.10
1 4.0
0.05': 204
U UU — Tt = t’ 5 00 A : t’ i
0.00 005 0.10 0.15 0.0 20 4.0 6.0 x10°
a) b)

Figure 7a, b: Liquid phase thickness.
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7. CONCLUSION

The performed modeling indicates high efficiency of the method of dynamic adaptation for the considered problems of
laser material processing.
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