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Abstract— Using the laser induced remelting of a three-layer target A1 + Ni + Cr as an example, the use 
of the dynamic adaptation for solving the multifront Stefan problem with explicit tracking of the melting 
and evaporation fronts is considered. The dynamic adaptation is used to construct quasi-uniform grids 
in regions with moving boundaries. The characteristic size of those regions may vary by several orders 
of magnitude in the process of computations. The algorithm used to construct the grids takes into 
account the varying size of the region and the velocity of the boundary motion, which makes it possible 
to automatically distribute the grid points without using fitting parameters.*The mathematical simulation 
of the doping process using the melt with respect to the thick substrate and thin doping layers showed 
the importance of the sequencing of coatings. The computations showed that if the upper exposed layer 
is chromium, then it can completely evaporate or sublimate by the end of the pulse due to its heat-trans­
fer properties. This can be easily changed if the doping layers are arranged according to the scheme A1 + 
Cr + Ni. Then, the upper exposed layer is nickel, which is not so easily evaporated.
DOl: 10.1134/S0965542506050095
Keywords: dynamic adaptation, mathematical simulation, grid generation, difference schemes, phase 
transitions, laser action, multilayer target, multifront Stefan problem

1. INTRODUCTION
The problem of laser induced remelting of multilayer materials occurs in many technological operations 

[1]. One of them is connected to laser doping of piston aluminum alloys [2, 3]. This is an important problem 
because the enhancement of the performance characteristics of pistons is the main way of increasing the 
lifetime of internal combustion engines. Ever increasing temperatures and dynamic loads lead to the dete­
rioration of the strength properties of the piston in the process of its operation, mainly, due to the deteriora­
tion of the grooves under the compression rings. To strengthen those grooves, the aluminum pistons are laser 
doped with wear-resistant and heat-resistant alloys that improve the microhardness, impact elasticity, wear 
resistance, and corrosion stability of the metals. The doping is performed with metallic powders based on 
FeCuB, NiCrMo, or NiCr, which are applied to the piston as coatings and then melted by laser emission (a 
C 0 2 laser with X = 10.6 pm) with a relatively small intensity G = 5 x 101 * 3—3 x 104 Wt/cm2 and the displace­
ment rate v ~  0.1-0.5 m/min. [4,5]. Then, a groove is made through the remelted region. Studies [6,7] dem­
onstrated that the powders of Ni and Cr are the most effective dopes. It was established that the quality of 
the strengthened layer depends not only on the conditions of the laser action but also on the sequence of the 
doping layers. In particular, it was established that if the upper layer consists of chromium, then the concen­
tration of chromium drops significantly or even completely vanishes after the laser processing.

An adequate solution of this class of problems assumes that such quantities as the surface temperature, 
the velocity of propagation of the phase front, and the thickness of the melted and evaporated layers are 
determined. A theoretical investigation of the processes of melting and evaporation under nonstationary 
conditions can be performed only with the use of mathematical modeling [8].

From the mathematical point of view, the problem under consideration is a nonlinear problem of math­
ematical physics with strongly varying heat-transfer properties. In the simplest setting, the processes of 
heating, melting, and evaporation of a multilayer target can be described in the framework of the multifront 
classical variant of the Stefan problem [8]. From the computational point of view, the main specific features

848

mailto:immras@orc.ru


MATHEMATICAL SIMULATION OF LASER INDUCED MELTING 849

of this problem are due to the presence of moving interphase boundaries, which must be considered explic­
itly because of the relevant physical processes.

In this paper, we provide a mathematical model of the laser induced heating, melting, and evaporation 
of a three-layer metallic target aimed at determining the optimal modes of processing so as to minimize the 
effect of the evaporation for various sequences of applying the doping layers. The method of dynamic adap­
tation [8-10] was used to investigate the dynamic behavior of the phase transitions in a multilayer target. 
An analysis of the modeling results revealed ihe cause of the absence of the chromium in the remelted sam­
ples under certain modes of processing.

2. STATEMENT OF THE PROBLEM

The process called laser doping is based on the phenomenon of the formation of surface layers having a 
different composition and different properties when the target is coated by an appropriate material, then 
melted by a laser, and subsequently crystallized. The thickness of the doping depends on the conditions of 
the laser action; more precisely, it mainly depends on the intensity and duration of the laser pulse. Provided 
that the duration of the laser pulse is fixed, the intensity is bounded from below by the melting threshold, 
and it is bounded from above by the appearance of active evaporation.

We use a simplified statement of the problem in which the main role is played by the thermal processes 
and phase transitions—melting and evaporation—in the three-layer target shown in Fig. 1. The main 
assumption is that we neglect the hydrodynamic processes due to their great computational complexity. The 
laser emission is propagating along the axis x from the right to the left (see Fig. 1). When striking the surface 
of the target, the laser flow is partially absorbed and partially reflected. The absorbed portion of the laser 
emission depends on the state of the surface; it is characterized by the absorption ability A, which generally 
depends on the surface temperature.

Depending on the intensity G and on the duration of the action "tj, the laser emission sequentially causes 
the heating and then melting or evaporation of all the layers of the target. The first-order phase transitions
are characterized by the presence of a sharp interface between the phases. In Fig. 1, the points x -  Г"Дг) 
mark the interphase boundaries of the type solid-liquid, x = r]Jv(t.) mark the interphase boundaries of the 
type condensed medium-vapor, and x  = P*'" + ' mark the contact boundaries between the different media. 
The superscript n and the subscripts s, l, and v denote, respectively, the nth layer, the solid, liquid, and evap­
orated material.

For the mathematical description of the processes in multilayer materials exposed to a pulse action, we 
used the combined variant of the Stefan problem [8] in which the process of melting-solidification is 
described by the classical Stefan problem, and the evaporation is described in the framework of the single­
phase variant. The Stefan problem is solved for a nonlinear heat equation subject to appropriate boundary

(a)

Fig. 1.
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conditions:

ot ox ox_ , H = C„(T)T, k = s ,i , n =  1 ,2 ,3 ,
( 1)

*o< x<  Tkv(t), t>  0.

Initial and boundary conditions. At the initial instance t0, the temperature of all the layers is assumed to 
be equal to a background value T0:

t = t0 \ T(t0,x )  = T0. (2)

The left boundary x  = д:0 is assumed to be heat-insulated:

x = xn = 0ox (3)

On the melting-solidification interfaces x = (r), we have two relations, namely, the Stefan condition and
the temperature continuity condition:

x  = Г",(г) :
r)T r)T

K ( T ) - ^ - U T ) - ^  = psLmv st (4)

(Ts l= T s = Tt = T J n, n =  1 ,2 ,3 .

On the contact boundaries x  = Гп,л +', we have the perfect contact conditions

Г Л, Л + 1
:

: * < r -

(5)

(6)

rjryft _ rj*tl +1
(7)

On the right exposed boundary x = r£v (/) (к = s, [), the surface evaporation is described using the Knudsen 
layer [12,13]:

X = r ; v (0  :
- 7)T
Xk( T ) - ^ - A ( T k)G + PkL vv kv (8)

[pt^*v = Pv(v tv -K )]", [Pk + PkV2kv = Pv + pv( v kv- u ) 2]", (9)

[Tv = ссг(М)7*Г, ( 10)

Ри(РкГ П r~

LP// RTk \ »

[pv  = < у м ) р „ ] \

Рн(Тк) = P (,exp

(ID

1 7 1 - Г
L\T b тк.)/? J.

n = 1, 2, 3, к = s, l .

For M = 1, we have a^M ) = 0.633 and a p(M) = 0.326; for M = 0, we have a^M ) = a p(M) = 1. Here, Tk is 
the temperature of the condensed medium; a^M ) and a p(M) are the Crout coefficients; M is the Mach num­
ber; R is the gas constant; pw and PH are the density and the pressure of the saturated vapor; X(T) is the heat 
conductivity; Cp(T) is the specific heat; H is the enthalpy; Lm and Lv are the transition heats for the melting 
and evaporation, respectively; vsl and vkv (k = s, f) are the velocities of the melting-solidification and evap­
oration fronts, respectively; A(T) is the absorption coefficient; p(T) is the density; P is the pressure; и is the 
speed of sound; and Th and Tm are the boiling and melting temperatures, respectively.

3. THERMOPHYSICAL PROPERTIES AND PARAMETERS
The temperature dependences of the density p(7), the specific heat Cp(7), and the heat conductivity А.(Г) 

for aluminum, chromium, and nickel were taken from [12-17]; they are represented in Fig. 2. The vertical 
lines in this figure mark the equilibrium melting and evaporation temperatures for each of the materials.
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Note that the thermophysical properties of all the 
materials have a discontinuity when the equilibrium 
melting temperature is passed, i.e., when the tempera­
ture goes from the values below the equilibrium to 
higher values or vice versa. In addition, the behavior of 
the thermophysical properties of the materials consid­
ered in this paper is significantly different when the 
temperature increases.

Chromium and nickel are heavy metals; their den­
sity in the solid and the liquid states is 2 to 3 times 
greater than the density of aluminum: pNi > pCt >  pA1 
(see Fig, 2a). Accordingly, the propagation velocities 
of the phase fronts are also very different (they are 
inversely proportional to the density).

The specific heats of the materials (see Fig. 2b) in 
the solid state depend on time; in the liquid state, the 
specific heats are constant. Aluminum has the greatest 
heat capacity. At room temperature, its specific heat is 
2 to 3 times the specific heat of chromium and nickel. 
With increasing temperature, this difference decreases.

Chromium and nickel don't have very high heat 
conductivity: it is 2.5-4 times lower than that of alumi­
num (see Fig. 2c). Pay attention to the maximum jump 
of the heat conductivity of aluminum (approximately, 
by a factor of three) when the phase temperature Tm is 
passed through.

One of the qualitative characteristics of the thermo­
physical properties of materials is the thermal diffusiv- 
ity a -  XICPp (see Fig. 3); it describes the depth of the 
heat influence and the rate o f the heat transfer.

In the solid state, the thermal diffusivity of alumi­
num is greater by a factor of 3-5 than the thermal dif­
fusivity of chromium and nickel. In the liquid state, 
this factor exceeds 10. Thus, in the process of the laser 
action, aluminum quickly warms up to a considerable 
depth, while chromium and nickel warm up to a con­
siderable temperature only near the surface, which 
manifests itself in the dynamic behavior of the melt­
ing-solidification and evaporation processes of the 
materials in the three-layer target.

The table presents the values of the thermophysical 
parameters for the materials of interest.

P. g/cm3 (a)

Among these materials, aluminum has the lowest 
melting temperature Tm = 933 K, while chromium has FiS- -
the greatest melting temperature Tm = 2133 K. Pay 
attention to the very low difference between the melt­
ing and evaporation temperatures for chromium (less than 40%, T\JTm = 1,38), while aluminum has 
TJTm = 2.99.

4. ALGORITHM OF SOLUTION

To numerically solve problem (1)-(1 1), we used the dynamic adaptation method [9-11] based on the 
change to an arbitrary time-dependent system of coordinates with the variables (q, x) belonging to the com­
putation space Clq .. When we change to an arbitrary' time-dependent system of coordinates, the coordinates
of the grid points x\ become unknown in addition to the grid functions Т \ . To determine the new unknowns, 
we use the inverse transformation equation, which is a partial differential equation. This equation is set up
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a, cm2/s

T, К

Fig- 3.

in such a way that the velocity of the grid points depends on the dynamic behavior of the equations that 
describe the physical processes.

4.1. Arbitrary Time-Dependent System o f Coordinates

The change from the physical space , to the computation space T is performed using the transfor­
mation x = Ifq, x ),t = x that has a nonsingular inverse transformation q = ip(*, t), x = t. The Jacobian of this

transformation is — = ^  . The partial derivatives of the dependent variables are represented by (see [8-11])
P °q

A  - — + Q.—  — ~ P —  —  - p d p э
dt ~ Эх \\ldq' dx \\rdq' $x2 ~ Ч'ЭдфЭд’

Эх оwhere ^  is the velocity of the time-dependent system of coordinates and the transformation function

Q is unknown in advance and must be determined. In the framework of the problem under consideration, Q 
is interpreted as the flux of matter: Q = -pv. In terms of the new variables (q, x), Eq. (1) is written as

~Э(\)iH) = _ d(H Q) _ Ш
. Эх Э q Э q.

И = CpT, W = -M J J P IL  I , 
L Ф o q L

( 12)

'Эф _ _3Q" n >\II
rSI

.Эх dq. к Idq pj

where q0< q < Ttv, x > 0, n = 1, 2, 3, and k = s ,l.

(13)

Table

Transition heat
Element A, g/mol тт, к Tb,K ть/тт melting

I f6
boiling

A1 26.98 933 2793 2.99 400.3 10860
Cr 52 2133 2953 1.38 313.5 6500
Ni 58.71 1728 3188 1.85 299.8 6302
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After changing the coordinates, input equation (1) is transformed into Eq. (12) and is complemented by 
the inverse transformation equation (13). Upon determining the concrete form of the function Q, Eq. (13) is 
used to construct the adapting grid. The difference analog of this equation describes the dynamics of the grid 
points, and Q controls the motion of the grid points, which is consistent with the dynamic behavior of the 
unknown solution. The consistency can be achieved due to the fact that Q depends on the unknown solution,
i.e., on the functions T(t, x), v", (t), and v nkv (t). A proper choice of Q that ensures the consistency between 
the solution and the motion of the grid points is the crucial point in the dynamic adaptation method.

Usually, to compensate for the incomplete consistency between the unknown solution and the mecha­
nism of the grid reconstruction, the transformation function is supplied with fitting coefficients, which can 
be used to reduce the degree of inconsistency. On the other hand, the use of the fitting coefficients indicates 
that the adaptation method is imperfect.

Initial and boundary conditions. As a result of the change to an arbitrary time-dependent system of coor­
dinates, the coordinates of the grid points xj become new unknowns, in addition to the unknown grid func­

tions T j. To find the new unknowns, the extended mathematical model (12), (13) includes the inverse trans­
formation equation (13), which is a partial differential equation.

The transformation of the input equation (1) into the extended differential system (12), (13) requires 
additional initial and boundary conditions.

We assume that the change to the computation space is not accompanied by the deformation of the initial 
domain and, at the initial moment in time, the following conditions are fulfilled:

t = x0 : T(x0, q) = T0, \\f = (t0, <?) = 1. (14)

The left boundary q = q0 is assumed to be heat-insulated and fixed:

q = q0 : ~ M T ) £ ~  = 0, Q(z, q0) = 0. (15)

On the melting-solidification interfaces q = Г"; , we have two relations for the temperature T", and for the 

flux of matter Q",:

q = rsl: (Ts, = Ts = Tt -  Tm) \  (16)

On the contact boundaries x = P 1," +1, the perfect contact conditions (6) are complemented by the conditions 
that the boundary is fixed:

* - i — Г  = (ig)

Qn’n + '(z ,  r n' n + 1) = o.

On the right-hand evaporation boundary q = Tnkv (к = s, I), we used three conservation laws and three addi­
tional conditions on the external boundary of the Knudsen layer:

n =  1 ,2 ,3 , к = s, l, Tv = a T(M )Tk, pv = a p(M )pw,
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R T, -  '• “ ' [ f t - f j r ] '

(22)
forM  = I we have a r(M) =  0.633, a p(M) = 0.326, 

for M = 0 we have 0t7(M) = a p(M ) = 1.

Here, Qsl> Qkv (к = s t l) is the flux of the matter through the melting-solidification and evaporation bound-

4.2. The Transformation Function Q
The inclusion of the temperature dependence T(r, jc) in the transformation function makes it possible to 

have more grid points in the regions where the solution has a large gradient. Based on the belief that a large 
heat conductivity of metals is not favorable for the formation of temperature regions with large gradients, 
we may assume that the main specific feature of the Stefan problem is the presence of moving phase fronts. 
In this case, we can eliminate the dependence of Q on Г(г, x). In this case, we can take into account only the
propagation velocity of the phase fronts v", (t) and v j v (f), and construct the computation grids with a uni­
form (more precisely, quasi-uniform) distribution of the grid points at every time in the regions with moving 
boundaries.

In the dynamic adaptation method, the quasi-uniform distribution of the grid points is achieved using a 
quasi-uniform distribution of the function \j/ over the space. At every instant of time, such a distribution can 
be achieved if the inverse transformation equation is a diffusion-type equation. For this purpose, it is suffi­
cient to represent Q in the form (see [8-11])

(23)

(24)

« -  - < •
where D  is a free parameter interpreted as the diffusion coefficient.

With regard for (23), the inverse transformation equation (13) takes the form

d\g _  6Q _ l D d y  
Эт dq Э q dq

For sufficiently large values of D, any perturbation of \p on one of the boundaries or inside the domain 
will distribute uniformly along the space variable q ; upon a difference approximation of the differential 
model, this ensures a quasi-uniform distribution of the grid points in the physical space Qx t at every moment 
in time.

Taking into account that the sizes of the domains in the problem under consideration are very different, 
the method used to determine D is of crucial importance for the construction of the adapting grids.

4.3. Selection of the Coefficient D
Consider the inverse transformation equation (24) in the region bounded by q0 = Г0 and qr -  Tr. In the 

physical space, the associated boundaries are the moving boundaries jt0 = Г0<г) and xr = Tr(r), which travel 
with the speeds v 0 and vr, respectively. In the case D = const, Eq. (24) is the linear parabolic equation

with the boundary conditions

The solution perturbation S\|/ can appear on one or both boundaries if v0 and vr are distinct from zero. 
If D is sufficiently large, the solution of problem (25)—(27) is a function that is independent of the space

Sty = _dQ  _  г;0 у  
Эх Э q дд2

(25)

т = 0 : \р(д, 0) = const, (26)

4о = г о : QOj.'O = V0. 
Я, =  Гг : Q{g, т) = V,.

(27)
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variable q at every time x; i.e.,

Vf(q, t) = consi(T). (28)

The independence o f \|t of the space variable allows us to construct a uniform (more precisely, a quasi­
uniform) grid in the physical space. To this end, D  must be chosen such that a perturbation appearing on one 
of the boundaries could reach the opposite boundary in the time Дг; i.e., it must have enough time to travel 
the distance

The difficulty in the problem is that the size of the region L<J) can vary by several orders of magnitude 
in the course of time. For example, the newly appearing phase in the melting process has a size of about 
several Angstrom units (L$ ~ 1(H cm), while this size is L(/cnd) ~ (10(l-1 0 ’) cm at the end of the process, 
Respectively, the function л|/, which describes the dynamic behavior of the region, varies within the range 
from \|f(j = 1 at t -  0 to i|/cnd = 10s - 1 0 9 at f = renii.

To find D, we use the linear estimate for parabolic equation (25), which describes the length of the per­
turbation propagation from one of the boundaries (see [18]):

On the other hand, the expansion of the region due to the motion of the boundaries during the time At is

where Ц  is the size of the region at the initial time f -  0. Note that, for \|/(^, 0) = 1, the size of the domain 
in the computation and in the physical spaces is the same; i.e., Lq = xr(0) -  jcq(0) = qr -  q0.

The dynamic increase of the size of the region Ax(t) -  AL(t) can be represented in terms of the approxi­
mate representation of the Jacobian of (he transformation

eters of the input problem— the geometric size o f the region L(t) and the speeds of the boundaries v0 and vr;

Thus, the elimination of the fitting coefficient D enables us to make the construction of the quasi-uniform 
grids fully automatic independently of the linear size of the domain and the speed of the boundaries.

A xT = Г г( 0 - Г 0( 0  -  Щ ) .

A x T{t) = (D A t)m . (29)

Hence, we obtain

_ (A*r)2 = iHt) (30)
At At

A x(t) -  ( jv r - v 0])At = A L (t),

whence we have

lVr - V0l
Using (31), we can eliminate At in (30):

(31)

(32)

If only one of the boundaries is moving, we have, respectively,

In the expressions for D, the size L(r) of the region, which changes in time, can be written as

L (t)  = y f( t)L 0,

^  = A x(t)  = Д Ц () = - Д ? -  Aq p w  w  p v

Substitute the relations for L(i) and ALU) into (32) to obtain the final formula forD  in terms of the param
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4.4. Difference Approximation o f the Differential Model in the Computation Space

In the computation space Q.q.t,  the grid with the set of points (tox)”k is defined. The set of grid points is 
indexed using integer indexes i and half-integer indexes i + 1/2. The grid has the constant size h with respect 
to the space variable q and the variable size Ат/ with respect to v.

= [(?,-, T7), (<?/+ 1йЛ ? /+ 1 = qi + h ,q i + m = qi + 0.5h,i = 0, 1....... N -  1,

tj+1 = x J + At, j  = 0,1, . . .]} * .

In the physical space £2*,,, in accordance with the grid (toTq)"k, we define the grid (to'.);! with the set of 
points indexed by the integers (x, tj ) and half-integers (xi+ 1/2, tj ) with the constant size hx with respect to the 
space variable л: and the variable size AP with respect to t:

{co^= [(xi, t j ) ,( x i+m,ti) ,x i+l = Xi + hx, jci+1/2 = Xi + 0.5h, i = 0,

f  = tj + AtjJ  = 0 , \ , . . . ) } l

In the computation space, the integer grid points (<?,, T/) are associated with the flux quantities W/, Q\ 

and the variable xJi . The half-integer grid points (qi+1/2, V) are associated with the grid functions TJi+ m , 

P/+ 1/2 ' an^ ¥/+ 1/2 •
The system of differential equations (12), (13) is approximated by the system of conservative difference 

schemes (see [ 19])

2+1 /2 + 1

Дх7+1 к

' ^ + ' / 2 - ^ ш q\ : \ - q\+v
,2+1At

V + ‘ - r ;+l Air'*1 •*i +  1 t i 4  1/2

h\ nj+'1 P/+1/2J

-I*

Гn > _  п / ¥ / + |Д - ¥ / +  
’ LK ' U' 0.5(Л; + h,_

(34)

jy2 _ _^/P/ +1/2 — 71/- 1/2 , i =
tj// 0.5(/i, + /t,_|)

Boundary conditions (14)-(22) are approximated by the following finite difference relations:

q =  q0 : <  =  0, = 0,

4 = Tw : (Г/ = Tjs = Tj = T j ,  ( f i7, = - p X ,  = ,

9 = ГП' Л + 1 : ( Г ) "  = ( 1 У 'Г \  (7’7)я = (Tj )n + ', ( e 7)"*1 = 0,
Я + 1 n + 1 . n + 1

q  = П
M  т\+ т - т \_

V - 1/2 = a{gj- lvqL
' tj/ /  0.5 (A, +  A,-_i)

[0 iv  = P v((pi)”‘ Qkv — ^7)]Л» [ /57* + (pi)"'((2iv)2 = P i+  pjM -p i)~ ]Q l - U j )2]n

[Tjv = a T(M)T{]n, [p i = a p(M )p7w]",

(35)
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(36)

System of difference equations (14), (35) is linearized and then solved by the separate sweep method with 
iterations [20].

5. SIMULATION RESULTS

We focused on the investigation of the dynam­
ics of heating and phase transitions in the three- 
layer target consisting of a thick aluminum sub­
strate {/A| = 0.5-1 cm) and two thin coatings of 
nickel and chromium (/№ = lCt -  10-50 pm heated 
by a long laser pulse (x, = 1-5 s) with a rectangular 
time profile and relatively small intensity (G = (3 x 
105)-<3 x 104) W/cm2). The choice of the exposure 
conditions and the geometric and thermophysical 
parameters of the materials was correlated with the 
data of the technological experiments [6, 7]. 
According to the experimental studies [4—7], such 
exposure regimes correspond to deep melting of all 
the layers of the target in the absence of the inten­
sive surface evaporation.

Consider the typical example of laser treatment 
of the three-layer target with the layers of thickness 
/Al = 0.5 cm and INi = lCt = 25 pm. The duration and 
intensity of the laser pulse were Хг = 4 s and G = 
IQ4 Wt/cm2. Two configurations of the three-layer 
target were investigated for melting and evapora­
tion. In the first configuration (see Fig. la), the 
upper doping layer was chromium, and in the sec­
ond one, it was nickel (Fig. lb).

In both cases illustrated in Fig. 1, the laser 
emission strikes the surface of the upper coating 
and is partially reflected. The absorption capacity 
of the metallic surface was assumed to be indepen­
dent of the temperature and equal to A = 0.1, which 
corresponds to the absorption of the laser emission 
with the wavelength \ f = 10.6 pm. The absorbed 
portion of the laser pulse is completely released in 
the upper layer and quickly heats it. The second 
layer and the aluminum substrate are heated due to 
heat conduction. The aluminum substrate is the 
first to melt because it has the lowest melting tem­
perature Tm (see Fig. 4a). Then, nsckel is melted. 
Chromium, which has the highest melting temper­
ature Tm, is the last to melt (see Fig. 4a). Since alu­
minum has the largest jump of the heat conductiv­
ity on the interphase boundary Г5/ and the lowest 
density, it has the highest melting rate vsl miuI =;
0.58 cm/s. At such a rate, the substrate completely 
melts in the time Д; = 1.2 s, which is much shorter 
than is required for nickel and chromium to begin 
melting.

In the scheme depicted in Fig. la, where the 
exposed layer consists of chromium, even before 
the chromium begins to melt (more precisely, start-

v, cm/s
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vsh cm/s

Fig. 6.

Fig. 7.

vsh cm/s

Fig. 8.
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ing at / = 3 s), the surface sublimation of chro­
mium (i.e., its evaporation from the solid phase) 
starts with the rate v/v max = 7.6 x 10~3 cm/s. By t = 
3.6 s, when approximately 92.8% of the chromium 
has evaporated, it starts to melt, and then com­
pletely evaporates from the liquid phase shortly 
before the end of the pulse at t ~ 3.75 s (see 
Fig 4a). This effect is not observed in the configu­
ration depicted in Fig. lb, where the exposed layer 
consists of nickel (see Fig. 4b). Nickel starts to 
evaporate later than chromium (at t ~ 3.5 s) and the 
maximum evaporation rate is half of that for chro­
mium (vj( max = 3.6 x 10~3 cm/s).

We also note that even though the laser pulse 
has a rectangular profile, the heating and phase 
transitions for both variants are strongly nonsta- 
tionary. The maximum temperature Tmax = 2247 К 
on the surface of chromium is attained by the 
moment of complete evaporation; for nickel, the 
maximum temperature Tmax = 2300 К is attained 
by the end of the laser pulse (see Fig. 5). Due to the 
higher evaporation rate, the maximum tempera­
ture on the surface of chromium is somewhat 
lower than on the surface of nickel.

Consider the main traits of the phase transitions 
in the three-layer system. From the practical point 
of view, the heating and phase transitions in the 
upper exposed layer are of primary interest. In par­
ticular, it is important to investigate the depen­
dence of the behavior of the upper layer (which 
can be chromium or nickel) on its depth. It is 
important to determine the range of intensities and 
durations of the laser pulses for which the upper 
layer is completely evaporated.

Melting. In the range of intensities C = (3 x 
10s—2 x 104) Wt/cm2, the maximal melting rate for 
the aluminum substrate (/ = 0.5 cm) increases with
the growth of the intensity ( v ^ ; max = 0.36-
0.86 cm s_1). and it is independent of the thickness 
of the coatings and of the arrangement (see Fig. 6). 
When the thickness of the doping layers increases, 
only the time of attaining the maximum melting 
rate of the aluminum layer is delayed.

(a)

Fig. 9.
For nickel and chromium, the maximum melt­

ing rate depends not only on the intensity but also
on the thickness of the layer itself (see Figs. 7, 8). If the layer is thin ( / =10  pm), the greater part of heat is 
relayed to the lower layers, which affects the melting rate. When the thickness is increased to / = 50 |im, the 
heat flows in the layer become less intensive, and the melting rate vj7 max increases. For example, for nickel, 
Vf/.max increases by a factor of 2-3 (see Fig. 7), while the melting rate is almost independent of the location 
of the layer; i.e., it is of no importance whether nickel is the upper or the lower layer. For the chromium layer 
(see Fig. 8), the behavior strongly depends on the location of the layer. If the upper layer consists of chro­
mium and is thin (/ ~ 10 pm), it has enough time to completely evaporate before the melting starts (see 
Fig. 8).

The dynamics of melting for each of the layers can be described by the functions V|/3 and \\i,. These func­
tion show how many times the size of the solid and the liquid phases change under the influence of the mov­
ing melting fronts. Figure 9 shows the space distribution of vj/3 and for several instants of time. We assume
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Viv, cm/s t, s

Fig. 10. Fig. 11.

that the sizes of the physical and computation spaces are identical at the initial time 1 = 0; therefore, V|/,(0, 
x) = 1. This relation remains valid up to the moment when the aluminum begins to melt, i.e., up to t = 
1.24 x 10^ s (see Fig. 9); at this time, the region occupied by the solid phase begins to shrink, i.e., v|rs(t, *) < 
1, until it completely vanishes (\[t5(r, x) = 0). At the same time, the region occupied by the liquid phase begins 
to grow up to its maximal size \j/, AI(r, x ) = 92 (see Fig. 9b). Later, the function y , A,(r, *) remains invariable 
up to the beginning of crystallization because vsl=0. Figure 9b also illustrates the melting of nickel: y s Ni(f, 
x) < 1, \\ft Ni(r, x) §> 1. For chromium, we have \|/4. Cr(t, x) = 1» because the melting has not yet started. The 
distribution of x) and of \|/;(l, x) at t = 3.6 s (see Fig. 9c) corresponds to the stage when the aluminum 
and the chromium have already completely melted and the chromium is in the process of melting, which is 
characterized by the inequalities \|/, Cr(f, x) ^  1 and V/.сД  *) ^  1.

Evaporation. Due to its thermophysical properties, chromium evaporates much more intensively than 
nickel. Figure 10 shows the dependence of the maximal evaporation rate for chromium and nickel on the 
intensity of the laser pulse for the thickness / = 10 and / = 50 |im ; these values of the thickness correspond 
to the minimal and maximal thickness of the coatings used in the experiments described in [4-7]. In the 
entire range of intensities G = (3-30) x 103 W/cm2, the evaporation rate for chromium is by a factor of 3-5 
greater than that for nickel. The higher evaporation rate affects the time needed to completely remove the 
exposed layer.

Figure 11 shows the dependence of the time needed to completely remove the chromium and nickel tv(G) 
on the intensity of the laser pulse for two values of the thickness / = 10 and / = 50 pm.

Simulation showed that the removal of chromium by second-long and subsecond-long pulses can occur 
in two significantly different modes:
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(a) at low intensities G < 104 W/cm2, it occurs in the form of sublimation, i.e., in the form of evaporation 
from the solid phase;

(b) at higher intensities G > 104 W/cm2, it occurs in the form of evaporation from the liquid phase.
For nickel, the main removal mechanism is the evaporation from the liquid phase.
In Fig. 11, the range of the duration of the laser treatment x; = 0.7-3 s corresponding to the results 

described in [4-7] is marked by two horizontal dotted lines. The intersection of these lines with the curves 
tv{G) determines the values of G{t) needed to completely remove the upper layer. For the thin chromium 
layer with / = 10 pm (Fig. 11a), this range is 9 x 103 < G(r) < 2.4 x 104 W/cm2. When the thickness is / = 50 
pm, this range moves to the right and becomes 1.4 x 104 < G(t) < 2.9 x 104 W/cm2. If the exposure time t e 
(0.67-3.0) s and the intensity is less than the threshold values G(t) < 9.0 x 103 W/cm2 for l -  10 pm and 
G(t) < 1.4 x 104 W/cm2 for / = 50 pm, the chromium layers are not completely removed.

Figure 11 b shows the corresponding results for nickel. Here, the situation is qualitatively different. As in 
the case of chromium, there are threshold values of intensity which, when exceeded, ensure that the nickel 
layers are completely removed: G(t) < 1.3 x 104 W/cm2 for / = 10 pm and G{t) < 1.9 x 104 W/cm2 for I = 
50 pm. However, whereas the chromium layers are completely removed for any duration of the exposure, 
nickel is not removed for all the durations in the range t e (0.67-3.0) s. For / = 1 0  pm, the nickel layer is not 
completely removed even for the maximum intensity G = 3 x 104 W/cm2 if the exposure duration is < 1 s; 
for / = 50 pm, this duration is X/ < 1.5 s. Thus, when nickel is removed by varying the exposure duration x;, 
the coating can be retained even for the maximal intensity, while this is impossible for chromium.

The results obtained can be used in designing the technology of applying multicomponent coatings and 
their subsequent melting. In particular, it is not advisable to make the last layer consisting of chromium.

6. CONCLUSIONS
(1) The dynamic adaptation method makes it possible to perform mathematical simulations of the phase 

transitions in multilayer systems. The results show that the heating of three-layer targets and the phase tran­
sitions in them are much more complicated than in homogeneous materials. Independently of the time pro­
file and the exposure duration, three-layer systems never reach a stationary state, which is observed in 
homogeneous targets under the action of rectangular pulses of corresponding duration.

(2) A method for determining the diffusion coefficient is proposed that makes it possible to solve multi­
front Stefan problems without using fitting parameters.

(3) The simulation of the dynamics of the phase transitions in the three-layer A1 + Ni + Cr targets showed 
that the high intensity of chromium evaporation can result in a situation when one of the doping materials 
is completely removed in the process of melting. Understanding the mechanism of this phenomenon may 
be used to theoretically justify and improve coating technology.
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