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Summary. Computational experiments targeting such regimes require determination of
optical, thermo-physical and other characteristics of irradiated targets in wide temperature and
frequency ranges. The present paper suggests an approach to determine the optical
characteristics of metals at arbitrary temperature and frequency by an example of calculation
of reflectivity and volume absorptance of silver surface.

1 INTRODUCTION

Systematic investigation of all phenomena in the area of influence of concentrated
radiation fluxes (CRF) on condensed media is of scientific interest. This allows us to know
details of the mechanism of interaction of radiation with matter, the subtleties of the structure
of various substances. Such knowledge is also of great practical importance in the formulation
of the basic requirements for sources of CRF, and determining the optimum conditions of
exposure. For example, laser treatment of opaque materials requires such optical
characteristics as surface reflectivity R[%] or absorptance A=1-R and also volume
absorptance o [sm™].

The energy flow during irradiation of strongly absorbing condensed medium by a CRF is
partially reflected from the surface and partially absorbed within a thin near-surface layer.
The energy absorption has surface or volume nature depending on the irradiation regime
(duration of influence, radiation wave length) and optical and thermo-physical properties of
the processed materials. The deposited energy is then expended for heating, melting and
evaporation of the target.

For a wide class of materials including metals, there is an extensive information on
frequency dependence of optical characteristics measured at a fixed (usually room)
temperature.'” Temperature dependences for the majority of materials even in the low
temperature region are determined insufficiently precisely. So the temperature dependence of
absorptance A(T) is known to be linear for the majority of metals at temperatures below
melting temperature, A(T): a+b-T, where a,b - certain coefficients. The reflectivity and

absorptance are usually assumed to be temperature independent in the region close to or
exceeding the melting point, so its average or average-integral values within the considered
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temperature range are used in estimations.*

Such approach is not much suitable for mathematical modeling of treatment of metals by
ultrashort and high-power laser pulses when the energy of radiation is transferred directly to
electrons and strongly non-equilibrium region with hot electrons and cold lattice is formed in

solid. In addition, short period of time (t ~107" +1O‘15)s is required for heating of the
electronic subsystem to temperatures T, comparable to or exceeding the Fermi energy £ .
Electrons have Fermi distribution with temperature in the case of T, < £ . Degeneration is
removed at T, = E_ and electrons obtain Maxwell distribution forT, > £.. Transition
through T, ~ £ temperature is connected with change of electron-electron and electron-

phonon interactions mechanisms that lead to qualitative changes in optical and thermo-
physical characteristics of solid.’

Here, we present an attempt of calculation of the temperature and frequency dependences
of optical characteristics of metals in a wide range of frequencies (ha) =0.1+10 eV) and

temperatures (T, =0.024+50eV). To achieve this, we use the longitudinal

permittivity s’ = &' (a),T) obtained from the solution of kinetic equation.

2 THE THEORETICAL ANALYSIS

2.1 Reflectivity and volume absorptance

It is possible to express all linear (macroscopic) optical characteristics of plasma including
real coefficients of absorptance &, of reflection R and complex refraction index N =n+ix in
terms of its permittivity.® By definition, the complex refraction index N is equal to:

N=n+ix=+s", (1)

where n and k - are the optical constants representing the real and imaginary parts of
refraction index, &’ is the longitudinal permittivity. Since permittivity is also a complex

quantity &' = 51’ + igg one can equate their real and imaginary parts and obtain the following
system of equations:

g =n’-x%, g =2nk. (2)

The solution of the system (2) gives the expressions for n and «:

n=2 Lo [ et 1 g
emte o e} ] @

The reflectivity R and absorptance A of irradiated surface of infinitely thick plasma layer
at normal falling are expressed according to classical Fresnel formula as ’
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2, 2
R:(n_l)—2+’(2’ A:1_R:4—n2. (5)
(n+1) +« (n+1)+x

The volume absorptance coefficient « is thus equal

2. k0w 47K
o = =
C A

where  is the frequency of irradiation, A is the wave length, ¢ is the velocity of light.°
The values of R, A and a for low temperatures are usually determined from experimental
data and then are used to obtain optical constants n and .o

Generally speaking, the values of n,x, &’ for electronic plasma of metals are functions of

; (6)

radiation frequency @ and temperature T:
n=n(wT) x=xT), & =¢(T)

Thus, all macroscopic optical properties of metals and their frequency and temperature
dependences can be expressed solely in terms of longitudinal permittivity ¢’ = & (a),T )

2.2 Permittivity of degenerated electronic plasma of metal g(a),IZ)

It is known from the theory of electromagnetic field that the permittivity of free electron
gas g(a)IZ) depends on frequency @ (so-called time or frequency dispersion) and wave
vector k (the spatial dispersion). In the presence of space dispersion, i.e. depending on the

vector K, the permittivity is a tensor value & @,k | even in isotropic medium. The tensor

&ij (a),IZ) is characterized by two scalar functions - g' and &', so-called longitudinal and
transversal permittivity accordingly which depend on independent variables — frequency @
and wave vector modulus kK, &' =¢'(w,k), &' =&'(w,k). Preferential direction

disappears at k —0 and the tensor & (a),IZ) is reduced to 8(0))5ij , Where 8(0)) is the usual
scalar permittivity which takes into account only frequency dispersion. The limiting values of

functions &' and " also become equal to&’ = &' (@,0)= &' = &'(@,0) = &(w).
Generally speaking, the tensor &; (a),E) is a complex function of real variables ® and k.

Scalar functions ¢’ and &' are also complex functions of frequency @ and wave vector
modulus K .

e'(wk)=¢(wk)+iey(wk) &(wk)=e(ok)+ic(wk) (7)

The presence of time and spatial dispersion in the longitudinal permittivity g”’(a),k)
allows determining its frequency and temperature dependencies and corresponding
dependencies of refractivity and absorptance.

To determine the longitudinal permittivity in arbitrary temperature range, it was supposed
that the transition from strong degeneration &=T,/E; <<1 to Boltzmann’s case
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&=T,1 E- >>1 occurs smoothly. The temperature dependence of the chemical potential was
used for smoother transition®

u(l.)=E (1——5 3,;,5 ]zEFD(f) ®)

-t
D(¢)= [1——5 2 al 5“]
At low temperatures when (T, ) is close to £ (exact equality #(T,)=E, is reached at
absolute zero), collective electrons in metal obey the Fermi-Dirac statistics
f(E)=(exp(x—7)+1)", where x=E/T,, n=u(T,)/T,, E isthe energy of electron. The
distribution function f(E ) is practically close to Boltzmann’s one f(E ) = exp(n - X)for high
values of energy E whenx—77 >> 1.

The overall longitudinal permittivity is suggested to be defined in the form of the sum of
two components providing smooth transition from degenerated electron gas to Maxwell’s
plasma

¢ =& (0T)=D(¢)ee (@T)+(1-DE)ey (@T). 9
2.3 Kinetic equation

The calculation of permittivity g(a), IZ) in the general case of arbitrary values of vector

k (with essential effect of spatial dispersion) requires application of kinetic equation which
for collisionless plasma has the form:

a@T)+

ot or 0 p

; (10)

where f (f)) =f,+of (p) is the electron distribution function in the momentum space, f, is
the stationary isotropic and space-homogeneous distribution function unperturbed by the
field, 5 f is the variation of the distribution function under the influence of the field.”

The longitudinal part of permittivity g‘i(a),k)for the collisionless plasma is determined

from the solution of the kinetic equation (10) and has the form K

4re* T -0f(p) dip
(wk)=1- K . . 1
o) K w0 (b

The derived expression has a critical point (pole) in the bottom complex half plane. The

singularity = is usually considered as —= , 1.e. the value ® is represented in

U—-o ko —(w+i0)
the form of @+1i0 with infinitesimal positive imaginary part.
integration variable the integral (11) is written in the form

11 After a change of the
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[ f(_z) dz, &>0
2 7-10

The path of integration in the complex plane runs under the point Z =16 thatat 5 —0 is

equivalent to integration along the real axis with inclusion of the pole z=0 over an
infinitesimal semicircle. Contribution to integral from this contour is defined by the half
residue of integrand

Zf_(izgdz:TdeHﬁf(o). (12)

é'—;S

—00

The integral in the right part of equation (12) is the limiting value of an integral of Cauchy

type.
The analogue of the classical kinetic equation is used for description of electromagnetic

properties of the quantum plasma to which electronic plasma of metals refers to.'”'" The
equation for the quantum distribution function f([)') dependent on the kinematic
momentum P, for a small deviation from the equilibrium homogeneous condition

f(r),f,t)z fo(r))—i-é f(r),f,t), has form:

a(é‘f)_,_va(é‘j)_'_eéa(é’fo): ¢ iJ'eif(P'—P)x fo(ﬁ' 6—?h?—gp(F+h—fj+
ot or op  (2z) or 2

w(r_h_;ﬂ_g[(ﬁg_gj_;\(ﬁh_;};(r_h_;)ﬂdfdp' 03

where f, is the stationary isotropic and space-homogeneous momentum distribution function

of electrons unperturbed by the field, o f is its variation under the influence of the field,

E, o, A are electric field strength vector, scalar and vector potentials, 7 = f)_l Jo.11

The equation (13) changes into the kinetic equation (10) at the classical limitZi — 0. The
function f (r)) for degenerated electron gas takes the form of Fermi distribution:

.\ 2n(p)
fe(p)= e

3

d’p

(2zn)’

two values of spin projection, n(|3) is the number of filled quantum electron states with

where is the number of conditions within the momentum space element d°p with

specified values of momentum and spin projections. n(r)):l in the case of complete
degeneration (T = 0) and distribution function takes the form:
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— (372 1/3hN1/3
f(p)=1(27n) p<pr = (axf N, (14)

0 P> Pe

The expression for longitudinal permittivity gé(a),IZ) of completely degenerate electron gas
with distribution function (14) is obtained in [12] from the solution of the kinetic equation

(13):
o2
gf(wj)zl_wre .[ 2d°p

hk? k& —(w+i0) (2zn)’°

(15)

A more general expression for permittivity of degenerate plasma is obtained atT # 0.
Elementary but rather tedious integration of equation (15) leads to the following result:"

2
p  hk
1+exp| n(& —[— j
( ) pTe 2pTe

0

Az me’N, Iln
n K pr Fyyp($)

dp

e'(wk)=1 —,
2) lkp/ m— 0
Lo 77(5)_[ P, hk] p/m—(w+i0)

(16)

Pr 2P:

where 4, p; are the average values of thermal velocity and electron momentum, K is the

average value of the modulus of the wave vector k.
The integral in the equation (16) is a limiting value of integral of Cauchy type due to the

f =
presence o ; 5—(a)+ iO)

variable (w+1i0) along the real axis with inclusion of the point p=me/k .

singularity. The integration path runs in the plane of the complex

2.4 Imaginary part of the longitudinal permittivity g; (a),lz)

The imaginary part 55 (a),k) of the longitudinal permittivity g’ (a),E) is defined in (16)
by a half residue in the point p=ma /K. We separate it using the expression (12) and

obtain:
nk Y’
- 1+exp n(é)_(pp_ij
g;(a),k): 472'3 e rﬂNe |n Te Te : (17)
hk pTFlIZ(é:) p hk
T+exp n(&)—| — +
pTe 2pTe

The imaginary part of permittivity 55; (a),k) in the case of degenerate electron Fermi gas
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with account of expressions p=mo/k, k.=p/h, p=mo. :(ngF )“2,

ve = (2&. I'm)"'? is written as:

k 2

oo o), 2 - e | |
(hof ke Y
1+exp n(é)—[ki +2fmj ]

1/2 1/2
47 e’N T, :
(bj d, :(4 ZN J is the plasma or Langmuir frequency
m 7e’N,

(18)

v
where @, = dTe

e
k+1/2

X ) )
—ldx is the Fermi's

and Debye radius for electrons accordingly, F, ., =j
2 exp(x—n)+

integral. The values of F,, and 77(§ ) are approximated by expressions: >

2 ) 4372
gf 3/2, U(%Z):f l+|n§3’2+4/37;1’2

plasma with account of

I

I:1/2

The imaginary part of permittivity for Maxwell
Kie = Pro /1 = h‘l(ZmTe )1/2 , Pre =My, = = (2mTe )1/2, G, = (2Te / m)“2 can be written as:

2
w Ak
1+ex - S
p 77(5) (kTeUTe 2mUTe)
2
w hk
1+ex — 4T
p 77(5) (kTeUTe 2rnUTej

Te (ha)Le) .In (19)

eau(@k)=27 (hof

The expressions (18)-(19) in two limiting cases of low T, =0 and high T, >> ¢ change
into two well-known relationships. The expression (18) changes at T, -0 into the formula

obtained in [13] for imaginary part of permittivity &, (a),k) of degenerate electron Fermi -

gas:

In other limiting case of sufficient for degeneration removal high temperatures £ >> 1 and

h—0, relationship (19) matches a known expression 52”1M (w,k) for classical electron

plasma:’
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s /)

Thus, the imaginary part of permittivity of degenerated electron gas 5;; (a),k) and

@

exp(_%[_

Kor,

2

otlon=(3)

Maxwell plasma g;M (a),k) can be written in the form of frequency and temperature

dependencies
2
E-.(h
 |1vew n(é)—élTF(Ec’)_lJ
f (o) 5
e1¢(@T,)=C(ho)T, -2 .In |
(re) 1+ ex (5)_ﬂ ho
P AT, \ E;
1( he ?
, 1+exp 77(5)_Z ?_1
82(,M (a)’Te)=C(ha))Te (ha)LeS) In o
(ha)) e (5)_1@ l
P 4\ T,

The expression for the total imaginary part of permittivity £, , according to (9) is presented
in the form explicitly dependent on the radiation frequency o and electron temperature T, :

T (h a)Le)z

2
where the value D(&)= (1—7;—'52 +

D(£)in

(0.~ D(E)es (0T, )+ (1 D)L, <w,n>=(c :

14-eXp[n(§)

_ljre_,
4&\ Ep

7t £
3! 4!

+(1-D(&))In

(o)’

T

e

1+w{;@»j[h”—

]x

)

oo o) 3

T

e

)

» (20)

], C :C(ha)) weakly varies with frequency,

C =1+ 27 within the frequency range 7i®w =0.1+100 eV.

2.5 The real part of longitudinal permittivity ¢, (@, k)

Analytical determination of real part of permittivity &, =&, (a),IZ) by means of the

equation (16) is possible only for two limiting cases: for high @/kv;, >>1 and low

ol koy, << 1 frequencies."
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High-frequency approximation gf'h(a), k). At high frequencies @/ kvy, >>1 the integrand
(16) can be expanded in a Taylor series witch integration gives the approximation for the real

part of permittivity &,"(e,k):
2 » 2j+1
e Ne L Z (%j F(2j+1)/2 (21)
K Pre -Fyp 5 @

&M@, k)=1-

We preserve the first three terms of expansion in (21) and obtain:

3 5
8lé,h(w,-|-e):1_ o/, 1 (kUTej_'_(kUTej F3/2+(kUTej Fs/» 4
Kop, @ @ o ) F,, @ F.,

For Fermi component

2 2 4
Sf,h(a),-l- ):1_ s 1+ Kevre | Fayo n Kevre | sz -
o : o w Fi2 w P

Taking into account values of Fermi integrals F,,, and average electron energy

F
< E >=T,—*2Z approximation for &,; is written as
1/2
2 2 2
et a1 hoe |, 4Ee <€>+(4EF) <:E> 22)
’ hw (hw) (hw)

For Maxwell plasma & > 1

2 2\?2 2\*
SO VR R P L B P (23)
ho ho ho
Low-frequency approximation af's . A change of variables y = X+®/ ko, is preformed in

integral (16) for low frequencies @/ kv, <<1. After expansion in series and integration
within x we obtain:

. . . ) ) 2j+j|_. i . 2(j+1) o (i)
gf*5=1—4 z ¢ N, _m {FU2+Z(—1)J A 2+J( wj J-f (X) 4y L4

k*pr,  Fu, = (2j+1)1 1+ j (ko ) Ux

where f(j)(x) is the j-th derivative of Fermi distribution function. Preserving only first two
components | =0,1 in series (24) we write:
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s 4-72'-82-Ne m f(o) X f(l) X
&°(0,k)=1- 2.2 Foo+ [ j J. ( )d 2{ j J- ( )d j
k"pr,  Fus Ko ko

At & <1 for Fermi distribution we obtain:

) 2 4
(o k)e1- 2T N Fualy ff @ | of @
Ke pr, Fi/ Keor Keor
£(0) w12
(X) g, 7 X" dx Pop . 2% the

=F ., and = ,
Jx J.eXp(X_U)+1 e Fi/ (§2+(2/3)2)l/2

low-frequency approximation for Fermi components take the form:

/s (ha)L )2 2 (ha))z 1 (ha))4
o, k)= 1- = 1 — ) 2
= RV AES) i SV A T >

Corresponding value for Maxwell component & > 1 is written as:

2 2 4
, 1{ ho ho 1{ heo
(s ,k ~1-= Le 1+ — | +—| — . 26
81,M(a) ) 2( T, J[ [Te} S(Te]] (26)

Taking into account the expressions (22), (25), the real part of permittivity of degenerated
electron gas gfp we can be presented (25) in the form of lacing of high-frequency gfﬁ (a),Te)

Considering that I

and low-frequency gf,f (a),Te) approximations. The high-frequency gf,'_f (a),Te) approximation
satisfies the condition @/ kv, >>1 and is used in low-temperature region. Low-frequency
approximation gfé (a),Te) satisfies the condition @/kuv;, <<1 and is applied to high
temperatures. The lacing is carried out in the point of intersection of the curves &1 (0,T,)
and &7 (w,T,) where the permittivity transits from ng (,T,) curve to Eir *(,T,) curve.

The same method of lacing of high-frequency glyM (a),Te) and low-frequency
gf,jl (a),Te) approximations is used to determine the real part of permittivity for Maxwell
plasma ¢&;,, (a),Te). Using the obtained expressions for gva and ngM (a),Te) real part of

permittivity &;" (a), k) is finally presented as:
£(@.T)=D(§)ere (@.T)+(1- D)y (@7). 27)

3 CALCULATION OF REFLECTIVITY R(@,T,) AND VOLUME ABSORPTANCE
a(o,T,) OF SILVER

The results of above theoretical analysis can be used to determine the frequency and
temperature dependences of a volume absorptance a(a), Te) and surface reflectivity R(w,T,)

of metal targets. Present paper treats silver as irradiated target material. Silver is a one-valent
metal and is characterized by following parameters:
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2
N, =z~ =5862x10% cm®, B, = (3z°N,)** =5.219eV
AM 2m

ho,=(@rzeN, )" =8990eV,

where z — valency, A - atomic weight, M — mass."

As it was already noted, there is extensive information on frequency dependence of
optical characteristics of metals, measured as a rule at a room temperature.” > '® So to
compare the calculated and reference data we started with calculation of frequency

dependences of imaginary &, (a)) and real &, (a)) parts of permittivity using relationships (20)
and (27) at a fixed temperature (293 K), Fig.1. The results of calculations shown at Fig.1
indicate that properties of the frequency dependences &, (@) and (@) correspond to the

generally accepted view on the behavior of permittivity of electron plasma. In particular, the
real and imaginary parts change with frequency asymptotically tending to 1 and 0

correspondingly, moreover, the real part &, (a)) changes its sign during transition over the

pointhw=rhao,.

1 -

\
]
1
! 10°
10°
—_ 3
<) A
— W
“w 10'
10°
-4 v T v T Y T v T v — T y T T T 110"
2 0 2 4 6 8 10 12 14
o [eV]

Fig. 1 Frequency dependence real Ef (a)) and imaginary part E; (a)) of longitudinal inductivity at
temperature T=290° K for silver.

The obtained dependencies &, (w) and &} (w) were also used to determine the dispersion
of the real n and imaginary parts x of refractivity N and then to calculate the frequency
dependences of the volume absorptance a(w) and reflectivity of the surface R(w) using
relations (5) and (6), Fig.2. Comparison of the obtained dependences a(a)) and R(a)) (solid
lines) with reference data (dashed lines), Fig.2, exhibits quite good quantitative fitness in the
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laser frequency range 1w € [0.1 + 10] ev

a(m) [cm'1]

a(Te) [em™)

0 2 4 6 8
o (eV)

8 10 12

6
o [eV]

Fig. 2 a, b Frequency dependence of a) volume absorptance a(a)) b) surface reflectivity R(a)) at
temperature T=290° K for silver. Solid lines — calculated curves, dashed lines — reference data.

3a

Te (eV)

1aq 3b 1

o ——— 3 —

cs.]

87

0.0;4\

4]

83

02 1

o1

n,n-'_—__—_______-'_‘-ﬁ————-
¢ 2 4 & B 0 12 14

Ta {8V}

Fig. 3 a,b Temperature dependencies a) volume
absorptance b) surface reflectivity at fixed frequencies:

1. hw=0117eV (1=10,64m) 2. hw=0248eV (1=5um) 3. hw=117eV (1=1,06um),
4. heoo =155V (1=0,8um), 5. hew=179eV (1 =0,694um), 6. hoo=243eV (1=051um),
7. ho=368eV (4 =0,337um),
9. haov=499eV (1 =0,248,m),
11. hoo=124eV (A =0,1um).

)
8. hw=4025eV (1=0,308um),
10. hoo=642eV (1 =0,193m),

The temperature dependencies a(w,T,) and R(@,T,) also have been calculated for a

number of constant frequencies corresponding to the radiation wavelengths of widely used
lasers. Both characteristics, tend to decrease as electron gas temperature rises in the laser
range of A €(0.1+10.6) um, starting from the infra-red and to the ultraviolet band, Fig.3.
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4 CONCLUSIONS

Ultrashort and high-power pulsed laser treatment of metals is accompanied by generation
of strongly non-equilibrium regions in solid with hot electrons and cold lattice. The electron
subsystem can be heated to comparable to or exceeding the Fermi energy temperatures.
Optical properties of Fermi-gas of metals are considered at arbitrary temperature (T = &¢).

The expressions for temperature and frequency dependencies of permittivity are obtained
from the solution of the kinetic equation. Frequency and temperature dependencies of
reflectivity of irradiated surface and volume factor of absorption are determined using
Fennel’s formulae.
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