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Summary. On the basis of nine semi-empirical potentials: Stillinger-Weber (SW), Stillinger-
Weber modification (SWM), Tersoff (T-C, T-D), EDIP, Erhart-Albe (EA-1, EA-2), KIHS and 
MIX using molecular dynamics modeling the critical parameters of silicon was determined. 
Analysis of simulation results and then comparing with calculations of other authors allowed 
us to determine the interaction potentials (EA-1, EA-2, KIHS and MIX) for which there is the 
greatest alignment with critical parameters of silicon used in practice. 
 
1 INTRODUCTION 

One of the fundamental problems in materials science is research of critical phenomena 
and determination of the critical parameters in the liquid - gas system for a wide range of pure 
metallic and nonmetallic materials [1,2]. Investigation of the behavior of matter in the vicinity 
of the critical point is a component of a more general problem - investigation of the properties 
of materials based on the equations of state [3-6]. However, up to the present for the vast 
majority elements parameters of the critical point has not been experimentally determined. 
The development of theoretical propositions is based on phenomenological [7, 8] and 
microscopic approaches [9, 10]. The use of phenomenological theory allowed us to obtain 
parameter estimates for a large number of elements [11]. The importance of determining the 
parameters of the critical point and its incompleteness are marked in [12]. 

During the last decades keen practical interest to critical phenomena has appeared and 
associated with wide application of concentrated energy flows (laser and electron beams, 
streams of fast particles), the power of which is sufficient to achieve near-critical and 
supercritical states [13,14]. In this field there are a number of unsolved problems relating to 
the behavior of nonequilibrium states, in particular, features of the behavior of superheated 
liquid phase during rapid heating of substance. Theoretical analysis of these problems can 
now be performed by means of mathematical modeling within the atomistic approach, in 
which the behavior of matter is described by molecular - dynamic (MD) models [15]. 

This work is devoted to the theoretical description, including determining the critical 
parameters such as pressure crp , density crρ  and temperature crT  of silicon carried out by 
means of computational experiments (CEs) based on the molecular dynamics models. 
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2 THE PROPOSED METHODS AND APPROACHES 
Investigations of the behavior of matter in the vicinity of the critical point is traditionally 

generate an increased interest associated with a wide variety of physical properties and the 
unusual behavior of critical phenomena in the liquid - vapor system. Many critical phenomena 
experimentally were observed 50-100 years ago. From generalization of the experimental data 
it is known that the equation of state of condensed medium defines a surface in 3 dimensional 
space with coordinates: temperature T , density ρ , pressure p . Each of the points of this 
surface corresponds to the equilibrium state of the system. The surface projection on plane 
pT  makes 3 separate areas corresponding to 3 aggregate states of matter: solid, liquid and 

gaseous. Solid and gaseous phases are in equilibrium along the curve of sublimation, solid 
and liquid - along the melting (hardening) curve and liquid and gaseous - along boiling 
(condensation) curve. Each point on these curves corresponds to the equilibrium state in 
which two phases can coexist. There is only one point, in which may coexist all three phases - 
the so-called triple point. On a plane pT  the curve of sublimation from the triple point 
continues down to low temperatures, the melting (hardening) curve from the triple point goes 
to infinity, the boiling (condensation) curve in contrast to the melting curve is cut off at a 
certain point, called the critical point with coordinates crcrcr Tp ,,ρ . The fact that the boiling 
(condensation) curve terminates at the critical point means that the liquid (along the binodal 
curve) can be transformed into gas continuously without crossing the line of the phase 
transition, what is typical for phase transitions of the 2nd kind. The critical point is the only 
one point on the curve of phase equilibrium of liquid-gas - binodal, which coincides with the 
boundary of stability - the spinodal. 

The critical state (as well as phase transitions of the second kind) on the phase equilibrium 
curve liquid-gas is a special singular point of the thermodynamic potential. Other points on 
this curve (binodal) do not consist any features of the thermodynamic potential . On the curve 
of phase equilibrium potentials of both phases are equal and each of them, with some 
reservations, can be extended into the metastable region. In the case of the critical point, the 
function of thermodynamic potential in a "foreign" temperature region does not correspond to 
any, even a metastable state. At the critical point the curve of phase transitions of the first 
kind of goes into a curve of phase transitions of the second kind. In the vicinity of the critical 
point phase transitions of the first kind are similar to the second order phase transitions. 
Thermodynamic quantities that depend on the first derivative of thermodynamic potential: 
entropy, specific volume, and others have small jumps of these derivatives, with simultaneous 
anomalous behavior of thermodynamic quantities that depend on the second derivative of 
thermodynamic potential: heat capacity, isothermal compressibility, thermal expansion 
coefficient, and others. 

Phase transitions and related critical phenomena, vastly complicate the problem of their 
investigation both as physically and as mathematically. From a physical point of view of the 
complexity of critical phenomena is reduced to the necessity of explicit taking account of 
statistical fluctuations in the vicinity of the phase transition. Their existence and anomalous 
large value leads to an anomalous features a number of thermodynamic quantities. All 
physical difficulties inevitably manifested in attempts to make correct mathematical 
description of critical phenomena. At creation of corresponding mathematical models are used 
phenomenological [16,17] and atomistic approaches [18,19]. MD models describe a collection 
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of interacting particles (atoms, ions, molecules), and represent a system of differential 
equations. When using the MD models for the investigation of various properties of materials, 
including to determine the critical parameters crcrcr Tp ,,ρ  crucial role played by the choice of 
the interaction potentials between particles, since the accuracy of the results is directly 
dependent on it. 

Therefore, despite the wide opportunities of MD models, their usage requires a careful test 
calculations to determine the suitability of the selected interaction potentials in certain 
specific circumstances. This problem is especially acute in material with covalent bonds, 
which include silicon. 

Interatomic interaction in silicon is more complicated than in metals. Silicon refers to 
materials with covalent binding and has a number of structural features. So, under normal 
conditions, the silicon has a diamond structure, characterized by a small compactedness with 
the coordinate number of 4, which is much less than that of metals (8-12). As the pressure 
increases in silicon formed new structures - simple cubic, face-centered cubic with increasing 
coordination number, but differ little in energy. After melting liquid silicon becomes a metal 
with a coordination number of about 6 and with density greater than the density of the solid 
phase. The presence of these features makes the problem of constructing the interatomic 
interaction potential for silicon is not a simple task. At present there are several approaches to 
the construction of interatomic potentials for materials with covalent bonds. The best known 
and frequently used are the potentials Stillinger-Weber, (SW) [20], modification of Stillinger-
Weber (SWM) [21], Tersoff, (T-C, T-D) [22 - 24], Erhart-Albe, (EA -1, EA-2) [25, 26] and 
KIHS [27], EDIP [28-30]. Comparative analysis of interatomic interaction potentials for 
crystalline silicon, made in [31] shows that in the aggregate of mechanical and 
thermophysical parameters and characteristics the results of calculations with any of the 
potential does not satisfy the required accuracy of coincidence with the referenced and 
experimental data. The smallest number of poorly matching parameters and characteristics in 
a wide range of temperature and pressure for monocrystalline silicon has showed by potentials 
SW, KIHS, EA-2 and MIX (MIX = (31KIHS + SWM)/32) - a linear combination of two 
potentials: SWM and KIHS). This fact should be taken into account when determining the 
parameters of the critical point. Therefore, by analogy with [31] simulation was carried out 
with the same interaction potentials, supplemented potential MIX [31]. Comparison of 
simulation results among themselves, with the experimental estimates and calculations of 
other authors will allow to estimate in the aggregate of characteristics the most appropriate 
interaction potential suitable for describing processes in the near-critical region. 

To determine the critical parameters, there are several methods: of saturated vapor, of the 
heat of vaporization and of the average cluster size in the critical region, as well as meniscus, 
Cailletet - Mathias and isotherms methods (Van der Waals criteria) [7, 9, 32,33] that never 
used together and did not analyzed for their applicability. Statement of computational 
experiment allows for all of these methods to perform research for a wide class of interaction 
potentials on a single methodological basis and from a comparative analysis of simulation 
results to determine the most reliable values of the critical parameters of silicon. 
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3 STATEMENT OF THE PROBLEM, MATHEMATICAL MODEL AND 
COMPUTATIONAL ALGORITHM 

Mathematical model. The basis of the method of molecular dynamics (MD) is a model 
representation of a multi-atomic molecular system in which the particles are represented by 
material points, each of which has a mass, radius vector and velocity, respectively iii ,r,m υrr

, 

where Ni K1= . Interaction between the particles is carried out by forces 
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movement of an ensemble of particles is described by the Newton equations. 

As a result, the mathematical formulation of the problem consists of a system of ordinary 
differential equations, their difference analogue (difference scheme), the interatomic 
interaction potential and specifically defined initial and boundary conditions. The evolution of 
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Initial conditions. Integration of the system of equations (1) requires the knowledge of the 
coordinates and velocities 

0tii ),r(
=

υrr  for all N particles at the initial time t=0. At the initial 
time, the simulated environment is a crystal, polycrystal or liquid. To specify the initial values 
of macroscopic parameters more accurately as well as to ensure the sustainability of the 
system, a relaxation of the simulated ensemble is performed after setting the coordinates and 
velocities.  

Combined use of a thermostat and barostat that returns energy to the chaotic component of 
the particle motion to hold a given temperature T and pressure allows to quickly bring the 
system to a steady state. After bringing the system to such state, certain modified values of the 
lattice constant, taking into account the influence of the boundaries of the object will be 
reached automatically.  

Boundary conditions. In the case of an infinite domain with respect to one, two or three 
spatial directions X, Y, Z, the modeling of the processes is performed in the finite 
computational domain with the dimensions zyx LLL ××  along X, Y, Z axes correspondingly. 

Periodic boundary conditions are used along X, Y, Z axes with the periods of xL , yL , zL  
correspondingly. 

Periodic boundary conditions along X assume that the particles with the coordinate x 
within the range of xLx <≤0  exactly represent the particles within xx LkxkL )1( +<≤  for any 

67



V.I. MAZHUKIN, A. V. SHAPRANOV, O.N.KOROLEVA, A.V. RUDENKO 

integer 0k ≠ . That is, the particle leaving the computational domain from the upper 
boundary xLx =  is replaced by a new particle with the same value of velocity but entering 
the computational domain from the bottom boundary 0=x . If the accent marks the quantities 
relating to the new particle then: 
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Similarly, for particles leaving the computational domain through the lower boundary 
0=x : 
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The second important aspect of periodic boundary conditions is the force and potential 
energy of interaction of particles from the boundary areas: crrx <≤0  and xcrx LxrL <≤− )( , 
where rcr is the cutoff radius for the potential (it is assumed that one can neglect the forces at 
the distances crrr > ). 

Interaction of the particle i, which coordinate xi is within the range of xicrx LxrL <≤− )( , 
with the particles beyond the computational domain )( crxjx rLxL +<′≤ , is modelled using 

the particles crj rx <≤0  from the computational domain with radius-vectors being corrected 

during calculating the force )()( irij rFF
j

rrr
K

r
K ′= in the following way: 
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where xe
r

 is the axis X unit vector. 
Obviously, all of the above applies equally to the periodic boundary conditions along the 

coordinate axes Y and Z. 

Computational algorithm. As the object of the study we chose a dielectric film with the 
thickness of Z = 32 nm along the primary axis and with total size of the computational domain 
of 268 nm along that axis. The particles of the vapor phase were removed from the 
computation upon reaching the boundaries (permeable reflectionless boundaries). The size of 
the computational domain was 8x8 nm along the axes X, Y, with periodic boundary 
conditions. The total initial number of particles was 96 000. The mass of the particles 
corresponded to the one of silicon. The computations were performed for Si (diamond lattice 
with the lattice constant of 5.43A) with periodic boundary conditions (3D problem). The 
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integration timestep was set to 2 fs.  
The computational algorithm was based on the finite-difference Verlet scheme [34]. 

During modeling we used different statistical ensembles: the microcanonical ensemble 
(NVE), where the number of particles N, the volume V and the total energy E are constant, 
the canonical ensemble (NVT), where only the kinetic energy of the molecules (temperature) 
is fixed instead of the total energy, and isothermal-isobaric ensemble (NPT), which provides a 
constant pressure. The velocity (for NVT) and pressure (for NPT) adjustment was carried out 
by means of a thermostat and Berendsen barostat. 

A more detailed description of the mathematical statement of the problem and its 
numerical realization can be found in [35],[36]. 

4 MODELING RESULTS, DISCUSSION 
We used the following approaches to determine the parameters of the critical point. 

a) Method of the meniscus [9]. 
This method allows determining in a clear way the range of temperatures and densities, 

where the critical point is located for each of the considered interaction potentials. The 
method is based on the direct observation of the liquid and vapor in the two phase system in 
the numerical experiment. 

The computational domain is partially filled with the model liquid at the temperature 
knowingly below the critical point. In a series of experiments, the initial temperature was set 
to 4000K. The initial mass of liquid liqm  was set low enough so that the average density 
calculated as the relation of this mass to the total volume of the computational domain Vmliq  
was certainly below the critical density. Next, the system is brought to a steady state, in which 
a dynamic equilibrium is set between the liquid and the saturated vapor when the flow of 
particles emitted from the fluid is equal to the flow of particles returning from the vapor to the 
liquid. This is the state when the values of the pressure as well as the values of the density of 
liquid and saturated vapor are measured in the system.  

 

  
Fig.1. Steady states in the computational domain at 7000 K (a) and 8000 К (b) for the potential T-С. 

 
This experiment and measurements are repeated at every step at the higher temperature 

a) b) 
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value. At some temperature value of 0T , the density becomes uniform across the whole 
computational domain. Fig. 1 shows an example of two steady states for the non-uniform (a) 
and uniform (b) distributions of density across the volume at the temperatures of 7000 K и 
8000 K correspondingly. Since the initial mass of liquid was such that the average density 
was certainly below critical one, then crTT <0  as well, i.e. at such temperature the liquid will 
vaporize completely. 

Then the initial mass of liquid (at constant size of the computational domain) is increased and 
a series of experiments with different temperatures is repeated again. The temperature 0T  is 
determined again, i.e. when the density becomes uniform across the volume of the computational 
domain for the new initial mass of liquid liqm . The dependence )(0 liqmT  is non-monotonous and 

has a maximum equal to the critical temperature crT  exactly when crliq Vm ρ= . To clarify the 
position of this peak, we further use the method of Cailletet-Mathias [7]. Thus, the critical 
parameters are in the region of the transition from a state in which one can clearly distinguish the 
boundary between liquid and vapor (lower limit) to a state where the entire system is uniformly 
occupied with vapor (upper limit). 

b) Method of Cailletet and Mathias [7]. 
According to this method, the average density of the liquid and gaseous phases lie on a 

straight line, called the rectilinear diameter. The point of intersection of the rectilinear 
diameter with the density curve determines the critical value of the density and temperature. 
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Fig.2. Temperature dependence of the saturated vapor (below) and liquid (above) for different potentials. 
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Fig. 2 shows the temperature dependence of the densities of the liquid and vapor, resulting 
from a series of experiments described above, which are used to clarify the critical parameters 
using this method. 

Thus, we used here the definition of the critical temperature as the temperature, at which 
the pressure and density of the vapor have a maximum, while the density of the liquid being 
in a dynamic equilibrium with the vapor is minimized.  

c) Temperature dependence of the saturated vapor [7]. 
One can determine the critical pressure (at the known critical temperature) analyzing the 

temperature dependence of the pressure of the saturated vapor. The obtained temperature 
dependencies of the saturated vapor pressure are shown in Fig. 3. When passing through the 
critical point, there is a change of behavior: the strongly non-ideal saturated vapor described 
by an exponential function in the subcritical region is transformed into an ideal one with the 
linear dependence in the supercritical region. 

 
d) Temperature dependence of the heat of vaporization [33]. 

Since in the critical point the dividing line between the properties of the gaseous and 
liquid phases disappears, the heat of vaporization, which is determined by the difference of 
the enthalpies of the liquid and gaseous phases, vanishes. In a series of computational 
experiments similar to those described above, the temperature dependencies of the enthalpy of 
the liquid phase and the vapor were measured. Next, we calculated the difference between 
them at the same temperatures and obtained a family of curves for different interaction 
potentials (Fig. 4). The point where the heat of vaporization vanishes was assumed as the 
critical temperature for each of the potentials used. 

 
 

0

Fig. 3. Temperature dependencies of the saturated vapor pressure for different potentials 
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e) Temperature dependence of the average cluster size. 
In the subcritical region, the density and pressure of saturated vapor increase with 

increasing temperature. In the near-critical region, atomic vapor particles begin to unite into 
clusters, which reach their maximum size just at the critical point. As the temperature 
increases further, the density no longer grows. In this case, the clusters begin to break up into 
smaller ones due to the increase of the kinetic energy of random motion. That is, the average 
size of the cluster must have a singularity at the critical point. This fact is used in this method 
to determine the critical temperature.  

Mean number of atomic particles forming a cluster can be estimated using the formula  

)(
)(

TP

TkTn
N

sat

B= , 

where )(TPsat is the saturated vapor pressure at the temperature T, )(Tn  is the concentration 
of atomic particles in the saturated vapor. 

The temperature dependence of N  temperature has a typical bend at the critical point 
(Fig.5). 

 

 

 

 

 

 

Fig.4. Temperature dependence of evaporation heat 
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f) Method of isotherms (criteria of Van der Waals) [7,9]. 

It is known from the theory of van der Waals that in the critical point, the first and second 
derivatives of the pressure with regard to volume (density) vanish. For a set of fixed values of 
temperature (in the range of sub- and super-critical values), the dependencies (isotherms) of 
pressure vs. density for each of the potentials are plotted. To do this, a cubic computational 
domain with periodic boundary conditions in all three axes is completely filled with liquid at 
a fixed temperature. The system is brought to a steady state and then the pressure is measured. 
Further, the size of the computational domain without changing the number of particles and 
keeping the temperature constant is increased in the same three directions. Again, the system 
relaxes to a steady state and the pressure is measured. 

Since the isotherms corresponding to a temperature below the critical one have a 
deflection and a clear minimum, one can select the isotherm, in which the deflection and 
minimum are absent (tangent to the graph is zero) - and it will be the closest to the critical 
isotherm. For example, for the potential of Erhart-Albe2 at T=5500 K, the isotherm has a 
clear deflection (Fig. 6). For the isotherm T=6250 K, it is almost imperceptible. 

Received critical parameters of silicon (Fig. 1-6) are summarized in Table 1. Estimates of 
the parameters of the critical point [37, 38] used in the industry as well as the results of a 
simulation performed by the authors [39,40] Monte Carlo for a potential Stillenzhera - Weber 
placed there as well. 

Critical temperature determined from the dependence (Fig. 1-6). The procedure for 
calculating the average cluster size was the most accurate. The critical pressure is determined 
from the temperature dependence of the saturated vapor, Fig. 3. Cailletet - Mathias method for 
determining the values of the critical density was used. 

If the basis is recommended estimations [37, 38], the potentials of the EA-1, EA-2, KIHS 
and MIX show closest values of the critical parameters. Potentials WS and Tersoff show the 
largest deviation from the recommended estimations [37, 38]. 

Fig.5. Temperature dependence of the average cluster size 

T × 103 [K] 
6 4 8 10 0 

2 

4 

6 

10  

N  

8 

9 

1 

2 
3 

4 

5 

6 

7 

8 

1 – SW; 2 – T-C; 3 – T-D; 4 – EA-1; 5 – EA-2; 6 – EDIP; 7 – KIHS; 8 – MIX; 9 – SWM. 

73



V.I. MAZHUKIN, A. V. SHAPRANOV, O.N.KOROLEVA, A.V. RUDENKO 

At the same time the critical parameters for the potential Stillinger-Weber is in good 
agreement with the results for the SW obtained in the calculation [39, 40], which indicates 
that the decisive role of the interaction potential, rather than the method that was used. 
 

 
 Critical temperature, 

K 
Critical density, 

g/сm3 
Critical 

pressure, bar 

SW [20] 8550± 250 0.27± 0.06 2200± 400 

T-C [23] 7750± 250 0.24± 0.04 1900± 100 

EDIP [29] 7500± 250 0.31± 0.08 1000± 100 

T-D [24] 7250± 250 0.23± 0.07 1300 ± 300 

SWM [21] 7700± 250  0.25± 0.06 1200± 200 

KIHS [27] 6850± 250 0.24± 0.06 800 ± 300 

MIX [31] 6650± 250 0.22± 0.07 650 ± 100 

EA-1 [26] 5750± 250 0.19± 0.05 500± 100 

EA-2 [25] 6250± 250 0.24± 0.04 800± 100 

Estimations [37, 38]  5160 0.1207 530 

Calculations (SW) [39] 7500± 500 0.75± 0.1 - 

Calculations (SW) [40] 7925± 250 0.76± 0.5 1850± 400 

Table. 1. Critical parameters of silicon for different interaction potentials. 
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Fig.6. Method of isotherms to determine the critical temperature (potential of EA-2). 
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5 CONCLUSIONS 
According to carried out computational experiments and analysis of the dependencies 

were determined critical values: pressure crp , density crρ  and temperature crT  of the silicon 
to 9 interaction potentials. Statement of computational experiments carried out for 6 physical 
methods: meniscus [9], Cailletet - Mathias [7], the van der Waals isotherms [7,9], the 
temperature dependence of the saturated vapor [7], the temperature dependence of the heat of 
vaporization [33] and the average cluster size (method proposed by the authors). 

Comparison of the simulation results (Table 1) with critical parameters used in practical 
applications [37,38] showed that the best agreement observed for potentials EA-1, EA-2, MIX 
and KIHS. 

Comparison of the obtained critical parameters for the potential Stillinger -Weber [20] 
with results of calculations based on Monte-Karlo methods [39,40] for the same potential 
showed good agreement of results with each other, but with a large scatter of data [37,38]. 
Performed analysis allows us to recommend for modeling high-temperature processes 
( crm TTT ≤< ) in silicon exactly potentials EA-1, EA-2, MIX and KIHS, in contrast to low-
temperature processes ( mTT ≤ ) where according to [31] classical potential Stillinger -Weber 
[20] and potentials KIHS, EA-2 and MIX have the advantage. 
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