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Summary. The structure of shock and heat waves in the air, caused by the spread of laser 
plasma at the nanosecond exposure mode is studied by methods of mathematical modeling. 
The simulation showed that for nanosecond laser pulses, the formation of plasma occurs 
during the pulse, and the changes in the structure of the plasma torch, plasma expansion 
features, occurrence of shock and thermal waves depend on a number of parameters and the 
impact properties of the environment. The nature of the interaction of thermal and 
hydrodynamic flow quality varies with the magnitude of the thermal conductivity of the 
medium. The high thermal conductivity of the medium gives rise to thermal waves of two 
different types - the supersonic and subsonic. The structure of the solutions of supersonic 
mode is represented as two consecutive waves - thermal and hydrodynamic. The structure of 
the solutions in the subsonic mode is much more complicated and is represented in the form 
of three waves following each other - supersonic thermal wave, isothermal shock wave and 
the subsonic thermal wave coming after the shock. To solve nonlinear equations of 
hydrodynamics with a thermal conductivity finite-difference approach is used, combined with 
the procedure of dynamic adaptation of the computational grid, allowing explicitly tracking 
the strong (shock waves) and weak (thermal wave front) discontinuities. 

1 INTRODUCTION 

Pulsed laser impact on material has numerous applications, some of which is based on the 
laser ablation. Laser ablation is a complex phenomenon involving many interrelated processes 
occurring both during and after laser irradiation. Applications such as pulsed laser deposition 
(PLD)1, a laser-induced breakdown spectroscopy (LIBS)2,3, laser ablation with inductively 
coupled plasma of mass spectrometry (LA-ICP-MS)4, production of nanomaterials5,6, 
radiation sources for lithography7, radiation sources of hard ultraviolet and soft X-ray8, 9, and 
others based on the laser ablation. 

So many applications of pulsed laser impact make it an attractive direction for fundamental 
research. Despite the fact that there were carried out extensive fundamental investigations of 
laser-plasma torches 10.11, the basic propositions of the physics of pulsed laser ablation 
(PLA) were not fully understood because of the complex processes of interaction of laser 
radiation and plasma with the vaporized material and the environment. Many previous 
experimental and theoretical works were focused on the study of the adiabatic expansion of a 
laser plasma in a vacuum, despite the fact that most applications of PLA performed in the 
presence of ambient gas12. The presence of external gas environment sharply changes the 
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mode of the laser impact on the target, changes the conditions of the appearance of laser 
plasma and increases the complexity of the description of the process of laser ablation due to 
changing the structure of the plasma torch, special aspects of expansion of the plasma and 
appearance of shock wave13-15. 

Characteristics of laser-plasma formations depend on many parameters, such as target 
material16, 17,18 wavelength, laser pulse duration19,20, intensity21, ambient pressure13,22 and gas 
composition23. The underlying physical mechanisms of material ablation different for 
nanosecond (ns) and femtosecond (fs) laser pulses24,25. For laser pulses of femto-picosecond 
duration process of formation of plasma transformations occur after the laser pulse 
ending24,26. In ablation dominated homogeneous mechanisms of phase transformations and 
related spallation phenomena27-29. 

For a nanosecond laser pulses the process of formation of plasma occurs during the pulse 
and is interconnected with the process of material ablation. In ablation dominant role usually 
played by the processes of heat conduction and heterogeneous mechanisms of phase 
transitions (melting, evaporation) and the impact of a laser plasma formed in a gas medium. 
At a certain ratio of the parameters of the laser influence can be realized fast ablation modes 
based on the processes of explosive boiling and spinodal decomposition of overheated liquid 
phase30,31. Interaction of laser radiation of nanosecond duration with a torch can be 
significant. The resulting plasma can absorb and scatter laser radiation therewith screening the 
surface of the target, reducing the effectiveness of the ablation of materials. Highly heated 
plasma can also reemit absorbed energy in a shorter wavelength range, increasing the 
effectiveness of the ablation. For this reason, nanosecond laser ablation continues to be an 
active area of comprehensive studies32,33. The purpose of this paper is to study the structure of 
shock and heat waves in the air, caused by the propagating of laser plasma at the nanosecond 
influence mode. 

2 STATEMENT OF THE PROBLEM AND BASIC ASSUMPTIONS 

On a metal target placed in a gas (air) environment from right to left falls the flux of laser 
radiation, Fig.1. Incident flux G(t) = G0 (0.5τₒ	 -|0.5τₒ-t|)1/2, is partially absorbed A·G(t),  
causing heating and evaporation of the target, where τₒ - duration of the laser pulse, A - 
absorptivity of surface. Another part of the flux (1-A)·G(t),  is mirrored. Evaporated material, 
heating and  ionizing under the influence of laser flux, expands and effect push out action on 
the cold ambient gas. 

 
 

Fig. 1. Scheme of problem under research. 

In problems of gas dynamics describing the spread of high-temperature laser plasma, the 
basic mechanisms of energy transfer, along with radiation, are convective and conductive. 
Basis of mathematical models, in this case, together with the radiative transfer equation, 
constitute the equations of hydrodynamics with nonlinear thermal conductivity. Previously it 
paid great attention to the influence of nonlinear thermal conductivity on the peculiarities of 

gas medium 
target 

vapour 
G(t) 
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interaction of thermal processes with hydrodynamic34,35. It was found that solutions of this 
class of problems is a great variety, and within a relatively narrow range of parameters can be 
realized self-similar solutions36, widely used for testing numerical solutions. 

From the computational point of view the solution of hydrodynamic equations with 
nonlinear thermal conductivity refers to the problems of high complexity. A typical solution 
to these problems is complex structure and includes strong (shock wave front) and weak 
(thermal wave front) breaks, zones of large gradients of temperature, pressure, density and 
velocity. The structure of shock wave front and the thermal wave front depends on the degree 
of nonlinearity of thermal conductivity equation. Excluding the dissipative processes in the 
medium shock wave is strong discontinuity of all solution components u, ρ, P, T. 
Consideration of thermal conductivity eliminate discontinuity of function T(x,t) and leads to 
the appearance of the effective width of the front in temperature. At low thermal conductivity 
shock wave front by a temperature close to quasi-discontinuous. Strong thermal conductivity 
of the medium (power dependence of the thermal conductivity from temperature), which is 
characteristic for a fully ionized plasma, results in a significant increase in the effective width 
of the shock wave front and in appearance of temperature waves, which front at the tie point 
of the solution to the undisturbed background is a weak discontinuity. 

The presence of discontinuous solutions, areas of high gradients and their rapid 
propagation in space presents stringent requirements on the effectiveness of used computing 
algorithms, first of all, not so much to the quality of difference schemes as to the principles of 
construction of optimal computational grids. 

In order to significantly simplify the statement of the problem it is proposed to exclude 
from consideration process of target evaporation, assuming that at time t=t₀ near the 
evaporating surface was formed a thin layer of plasma T(0,t₀)=T₀, ρ(0, t₀) = ρ₀, front of which 
propagates at the speed u(0, t)=u₀(t). It is assumed that the laser flux is completely absorbed 
on the plasma front, plasma is fully ionized, which allows to describe the radiative transport 
in the approximation of radiant thermal conductivity. 

Mathematical statement of the problem. Statement of the problem of laser plasma 
spread in a gaseous medium is described in the Euler variables in one-dimensional non-
stationary problem of hydrodynamics with nonlinear thermal conductivity: 

�ρ
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+

�

��
(ρ�) = 0 
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Here, ρis the density, u is the velocity, P is the pressure, is the internal energy, T is the 
temperature, R is the gas constant, is the adiabatic index, W is heat flux, and is the thermal 
conductivity. It is assumed that is a power function of the temperature and density37: 
λ(T, ρ) = λₒ T a ρb. 

Initial conditions. At the initial time t = t₀ is assumed zero background of velocity and 
constant by the space density and temperature: 

�(�, ��) = 0,			�(�, ��) = T�,			ρ(�, ��) = ρ�	 (2.2) 

Boundary conditions. Formulation of boundary conditions made taking into account the 
fact that the left-plane � = Γ�(�) is a surface of plasma front, which at � ≠ 0  is the source of 
motion and heating, so on it formulated two boundary conditions that determine the velocity 
and the magnitude of heat flux: 

��Γ�(�), �� = ��(0.5τ� − |0.5τ� − �|)�,		 

(2.3)
��Γ�(�), �� = ��Γ�(�), �� = ρ���

�(0.5τ� − |0.5τ� − �|)��	

The particular values of a, b, and n will be specified later. The background values are 
preserved on the right boundary x = : 

�(∞, �) = 0, �(∞, �) = ��, ρ(∞, �) = ρ� 

 
         

(2.4) 

Relations on the shock front. Since the temperature across the front shock � = Γ�(�) is 
continuous, we write three conservation laws (Rankine–Hugoniot relations): 

Here, the minus and plus indices denote the variables on different sides of the shock wave, ʋW  
is the velocity of the shock wave, and DM is the mass flux across the shock front. 

3 DYNAMIC ADAPTATION METHOD 

Solution of nonlinear equations of hydrodynamics with a thermal conductivity (2.1) is carried 
out by finite-difference schemes, combined with the procedure of dynamic adaptation of the 
computational grid. The principles of construction of computing finite-difference algorithms with 
dynamic adaptation for a wide class of equations of parabolic and hyperbolic types with moving 
and fixed boundaries presented in detail in38-41. It also contains cited literature on methods of 
adaptation. 

An arbitrary non-stationary coordinate system. According to the dynamic adaptation 
method we make transition to an arbitrary non-stationary coordinate system. In the new variables 
(q, ), system (2.1) becomes 
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�

�τ
(ψρ�) +

�

��
�� + ρ�(� + �)� = 0 (3.2) 
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�τ
(ψρ�) +

�

��
��ρ(� + �)� + �

��

��
+

��

��
= 0,			� = −

λ(�, ρ)

ψ
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 (3.3) 

�ψ

�τ
= −

��

��
, (3.4) 

where is the Jacobian of the inverse transformation and Q is the adaptation function to be 
determined. 

Taking into account that all perturbations occur on the left boundary (surface of the plasma 
front) � = Γ�(�) and propagate in the direction to the right one, in order to save computational 

resources it is advisable to exclude from consideration the area not covered by perturbation. For 
this purpose the right boundary is shifted to the left and is located at a small distance from it. At 
the time of appearance the perturbation on the right boundary it is declared free boundary 
� = Γ�(�) and propagates with a velocity of heat or gas-dynamic perturbations. The new 
boundary � = Γ�(�) in a nonlinear thermal conductivity problems with a non-zero temperature 
background will always with the time come closer to the temperature wave front. The propagation 
velocity of the gas-dynamic perturbations ʋT determined by the ratio derived from the equation of 

motion in the moving coordinate system. The other conditions are transferred from (2.4) 
unchanged: 

	� = Γ�(�):		 						�� =
1

ρ�

��

��
,			�(Γ�(�), �) = 0,			�(Γ�(�), �) = ��,			ρ(Γ�(�), �) = ρ�	  

Thus, on proceeding to an arbitrary non-stationary coordinate system, the original differential 
model (2.1) is transformed into extended model (3.1)–(3.4), which has been supplemented by the 
inverse transformation equation (3.4). Accordingly, the necessary additions are introduced in 
initial (2.2) and boundary (2.3)–(2.5) conditions: 

τ = 0: �(�, 0) = 0,			�(�, 0) = ��,			ρ(�, 0) = ρ� (3.5) 

� = Γ�: 

��Γ�, τ� = ��(0.5τ� − |0.5τ� − τ|)�,		 

(3.6) ��Γ�, τ� = ��Γ�, τ� = ��
�(0.5τ� − |0.5τ� − τ|)��,		 

��Γ�, τ� = −��(0.5τ� − |0.5τ� − τ|)� 

� = Γ�: �(Γ�, τ) = 0, 		�(Γ�, τ) = ��, 		�(Γ�, τ) = −
1

ρ�

∂�

∂�
, 			ρ(Γ�, τ) = ρ�	 (3.7) 

In the non-stationary coordinate system discontinuities are explicitly introduced in the solution 
and after a shock wave appears, system (3.1)–(3.4) is solved in two subdomains divided by the 
shock front. At the front, the resulting solutions are joined using the Rankine–Hugoniot 
conditions: 

� = Γ�: ρ�(�� + ��) = ρ�(�� + ��) = �� (3.8) 
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�� + ρ�(�� + ��)� = �� + ρ�(�� + ��)� 

�� + 0.5ρ�(�� + ��)� = �� + 0.5ρ�(�� + ��)� 

�� = −�� 

4     FINITE DIFFERENCE APPROXIMATION 

System (3.1)–(3.8) was numerically solved on the grid: 

ω�,∆� = 〈
(��, τ�), (���� �⁄ , τ�), 		���� = �� + ℎ, ���� �⁄ = �� + 0.5ℎ, � = 0,1, … , � − 1		

τ��� = τ� + ∆τ�,			� = 0,1, . . .
〉. 

The differential equations were approximated by finite differences on staggered grids. 
Specifically, we used the following family of difference schemes, in which the density i + 

1/2, the temperature Ti + 1/2, the pressure Pi + 1/2, and the internal energy i + 1/2 were 

determined at the half-integer points, while the velocity ui and the function Qi were 
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Here ��� = σ����� + (1 − σ�)��, а σr = σ1, σ2, …  are the weighting factors determining the 

degree to which the difference scheme is implicit. If σ1 = σ2 =…= 0, we obtain a completely 

explicit difference scheme with an O(Δτ + h2) approximation error. If σ1 = σ2 =…= 1, the 

scheme is completely implicit with the same order of accuracy. In the case of σ1 = σ2 =…= 0.5, 

we have a scheme with an O(Δτ2 + h2) approximation error. The computations were performed 
using the completely implicit difference scheme with O(Δτ + h2) accuracy. 

For the functions {u, Q} = ƒ specified at the integer points of ω , their values at the half-
integer points were determined by the formula  ����

�
= 0.5(�� + ����). Similarly, the values of 

the functions {ψ, ρ, T, P, ε} = ƒ at the integer points were determined in terms of their values at 

the half-integer points:	�� = 0.5 �����
�

+ ����
�
�. The flowchart of the calculation algorithm 

presented at Fig. 2. The algorithm involves two internal iteration blocks based on Newton’s 
method. The first block solves the difference analogue of the energy equation, while the 
second block solves the analogues of the continuity equation, the equation of motion, and grid 
point redistribution equation (the first three equations in (4.1)). Both blocks are included in 
the external iteration cycle. If the number of external iteration steps in global cycle exceeds 15 
or the number of internal iteration steps exceeds 20, the time step is decreased by 10%. If the 
number of global iteration steps is less than four, the next time step is increased by 1%. The 
initial value for each unknown grid function is specified as 

����(�)
= �� + ��� − ����� Δ�� Δ����⁄ . 

 

  j 
step 

 j+1 step 

 

Calculation 
of 

Ti+1/2 

 
Calculation of 
i+1/2 , i+1/2 , ui 

 

 

Calculation 
of 
xi 

external iterations 

internal 
iterations 

internal 
iterations 

 j+2 
step 

    Fig. 2.  Flowchart of calculation algorithm. 
 

The Rankine–Hugoniot relations (3.8) are required to hold on the shock wave � = Γ�. 
Since the equations involve six unknowns, three of them are determined by solving system 
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(3.1)–(3.4) at the boundary points. These are the density ρ– and the velocity u– ahead of the 

shock front and the velocity u+ behind the shock front. The remaining three unknowns (the 

shock propagation velocity ʋW , the density ρ+ behind the shock front, and the temperature T– 
= T+ on the shock front) are determined by relations (3.8). 

 
5 CHOICE OF THE ADAPTATION FUNCTION 

The grid point distribution in the dynamic adaptation method is controlled using the 
adaptation function Q.  In the case of steep-gradient solutions, this function is usually 
determined from the quasi-stationarity principle38-42, according to which we choose a 
nonstationary coordinate system in which all the physical processes proceed as steady-state 
ones and the corresponding time derivatives are relatively small. Setting the time derivatives 
in the equations equal to zero yields the sought adaptation function. 

The general solution to the complete system of fluid dynamics equations (3.1)–(3.4) is 
determined by the sum of the velocity, density, and temperature. These functions have 
different (frequently oppositely directed) spatiotemporal distributions. A controllable grid 
point distribution for the system of equations must take into account the features of the 
spatiotemporal distributions for all the solution components. 

In the general case, the adaptation function in fluid dynamics problems can be determined 
using the entire system of equations38,41.42. In this paper, the function Q is found from energy 
equation (3.3), whose solution depends on the velocity, density, and heat conduction. In 
nonconservative form, the energy equation is 
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Based on the quasi-stationarity principle, we set /= 0 to obtain the equation 

	ρ(� + �)
��
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+ �

��

��
+

��

��
= 0 (5.1) 

By taking into account the particular form of the equations of state � = ρ��,			� =
�
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and differentiating the heat flux � = −
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rearrangements in Eq.(5.1): 
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��
+ ���� �� +
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(γ − 1)

�

λ(ρ, �)

ρ
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�

1

ψ
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 (5.2) 

where re is a regularizing constant that is a lower bound for the derivative as it tends to zero. 

After the difference approximation, the first square bracket in (5.2) exerts a contraction 
effect on the grid points in u and T. The second square bracket takes into account the 
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influence of nonlinear heat conduction and exerts a contraction effect with respect to and T. 
The last term is of the diffusion type. If (, T) 0, it has a smoothing effect and, in 
particular, prevents the intersection of grid point trajectories. 

The features of the class of problems under consideration are determined by two factors. 
The first is that the thermal conductivity is a power function of the temperature. At low 
temperatures (near zero), since the thermal conductivity is low, the dissipating effect of the 
diffusion term decreases sharply and may become insufficient for an optimal grid point 
distribution. The second factor is that the original problem is represented in the form of a free-
boundary problem. The original domain may then increase by many orders of magnitude. 
Accordingly, the values of increase as well, which also strongly reduces the diffusion 
component. To eliminate these effects, it is reasonable to supplement Q with a function 
obtained from the diffusion approximation taking into account the presence of moving 
boundaries: 

� = −�
�ψ

��
,	  

where D is the diffusivity. Its value is determined by the geometric size of a cell (the mesh 
size h), by the velocity of the boundary points (ʋl, ʋr), and by the minimum of the function 

(ψ
min

) over the entire domain: 

� =
ℎ|max(��, ��)|

ψ���
.  

Additionally, it is reasonable to represent the ratio of two temperature derivatives in Eq. 
(5.2) in the form of the derivative of a slowly varying logarithmic function: 
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���
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��
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��
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��

��
� + ����  

In view of the features described above, the adaptation function can be finally written as 
 

� = − �� + (γ − 1)�
��

��
� +
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(γ − 1)

�ρψ
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�ρ

�ρ

��
+

�λ

��

��

��
+ λ(ρ, �)
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��
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��

��
� + ������ −

	− ��
(γ − 1)

�

λ(ρ, �)

ρψ�
+ ��

�ψ

��
� .

 (5.3) 

6    SIMULATION RESULTS 

Modeling the problem of propagation of the front of a plasma torch in a gaseous medium is 
to solve the system (3.1) - (3.4) with the initial (3.5) and boundary (3.6), (3.7) conditions, 
Rankine–Hugoniot relations (3.8) and the function of adaptation (5.3). Due to the specifics of 
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the problem under consideration at the initial time selected a thin layer of strongly heated 
(T=1.5 eV) air in a monatomic state. The parameters of the problem on ascending part of the 
motion of the plasma front (t ≤ 0.5τₒ) agreed with the previously obtained self-similar 
solution42 and set by the following values 

� = 573	 � (��	К)⁄ , γ = 5 3⁄ , ρ� = 1		 �� ��⁄ ,			 

�� = 4.64	10� 	� �� �⁄⁄ ,			�� = 17450	К	~1.5	eV,					τ� = 2. 10��	�,		 

� = 1 6⁄ ,			� = 4,			� = −2.	

Figure 3 shows the time dependences of the gas-dynamic velocity and heat flux (2.3), (3.6) 
on the boundary of the plasma torch taking into account values of the selected parameters of 
the problem (ʋₒ, ρₒ, τₒ, n). 

The transformation function (5.3), taking into account the specific thermal conductivity 

dependence on the temperature and density of λ(T, ρ)= λₒ T 4 ρ
-2

 becomes: 
 

� = − �� + (γ − 1)�
��

��
� +

+ �
(γ − 1)

�ρψ
�−(2λ���ρ��)

�ρ

��
+ (4λ���ρ��)

��

��
+ λ���ρ��

�

��
�ln ��

��

��
� + ������ −

	− ��
(γ − 1)

�

λ���ρ��

ρψ�
+ ��

�ψ

��
� .

 (6.1) 

 
The number of nodes N in all variants of calculations is 30, the position of which in all the 
figures mentioned by markers. 
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Fig. 3.  Time profiles of velocity and flux on the boundary of plasma torch. 
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One of the purposes of this study is to compare the characteristics of the developing 
plasma flow depending on the degree of nonlinearity of the thermal processes. The simulation 
showed that the nature of the interaction of thermal and hydrodynamic fluxes qualitatively 
varies with the magnitude of the thermal conductivity of the medium. The high thermal 
conductivity of the medium leads to the appearance temperature waves35 which are divided 
into two different types by mode caused by them hydrodynamic motion - supersonic and 
subsonic. In supersonic regime heat propagates with a finite velocity on the initial 
background. Behind the front of the supersonic thermal wave appears isothermal shock wave. 
Temperature wave propagating at subsonic speeds, locates before going in front of it shock 
wave, and are characterized by equality to zero of heat flux W, by maximum of density ρ and 
by the local minimum of temperature T. 
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Fig. 4.  Subsonic mode with λₒ= 10 at the moment t = 10 ns. 
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Change of modes of propagation of heat in the case considered depends on the degree of 
non-linearity of thermal conductivity and determined by value of parameter λₒ. To 
dimensionless constant λₒ=1 corresponds value of 6.18·10-24 m7/(kg·s3·К5) (further are values 
of dimensionless constant λₒ, for certain self-similar modes42). At values of λₒ less than a 
certain value of dimensionless constant λ* (λₒ <λ* for the considered modes λ*≈30) formed 
subsonic temperature wave and with reverse ratio λₒ ≥ λ* there is supersonic temperature 
wave. In this study, we consider one variant of the subsonic temperature wave with λₒ=10, 
Fig. 4-5 and two with supersonic λₒ=50 and λₒ=200, Fig. 6-9. 

Subsonic mode. Temperature wave with λₒ=10 characterizes the subsonic mode of 
propagation of heat. After the occurrence of the shock wave 23 nodes fall into the area 
between the plasma torch and the shock wave, and in the area between the shock wave and 
external boundary - 7 nodes. Figures 4,5 show the profiles in times t=10 ns and t=20 ns, 
respectively. The dotted line corresponds to the self-similar solution42, and a solid line with 
markers - numerical (markers indicate position of the nodes of the computational grid). 
Jacobian of inverse transformation characterizes degree of change of the spatial step 
compared to its initial value. At the moment of occurrence of shock wave flux on the plasma 
front G ≈ 4.·106 W/cm2, the temperature ≈ 30465 K (≈2.63 eV). At t=10 ns flux G = 1.·109 
W/cm2, the temperature at the front T≈738600 K (≈63.7 eV). By the end of the calculations at 
t=20 ns flux and gas-dynamics velocity on the front is equal to zero, the temperature at the 
front ≈614000 K (≈53 eV). 

The structure of the solution in the subsonic mode (Fig. 4,5) is represented in the form of 
three waves following each other (from right to left): 

 supersonic temperature wave generated by the shock wave;  
 shock wave which is an isothermal jump with continuous temperature and 

discontinuous density and velocity;  
 subsonic temperature wave going after the shock wave. 

At the front of the supersonic temperature wave (weak discontinuity) derivatives of all 
functions with respect to x are maximal, but, as in the case of only one equation of nonlinear 
thermal conductivity without taking into account the influence of hydrodynamics, all physical 
quantities are continuous. At that behind the front heat fluxes, velocity, density and 
temperature increase sharply. 
Shock wave (isothermal discontinuity) is characterized by a strong change of all quantities. 

Another area of sharp change of physical quantities is a subsonic temperature wave front. 
It is characterized by maximum of density, zero heat flux and the local minimum of 
temperature. 

Dimensions of area and spatial grid steps in the physical space characterized by a function 
ψ(x,t), which is at any given time indicates how many times changed size of step and area as a 
whole. Taking into account that has been considered region with moving boundaries, in which 
the velocity of the right border (the front of supersonic temperature wave) far exceeded the 
the velocity of the left (the front of the plasma), ʋT >> ʋp, the geometric size of the physical 

area covered by perturbation at the specified time interval increased, according to the curve 
ψ(x,t), more than 5 orders of magnitude. Local minima of function ψ(x,t) occur in the area of 
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the largest gradients of solution and coincide with the fronts of subsonic and supersonic 
temperature waves, Fig. 4,5. 

The supersonic mode. In the case of a supersonic temperature wave takes place weak 
interaction of thermal processes with hydrodynamic. With a strong dependence of the thermal 
conductivity on temperature and high speed of propagation of heat supersonic mode can 
become a dominant form of heat transfer. 

Figures 6-9 shows the spatial profiles of the gas-dynamic functions of temperature and 
function ψ for λₒ = 50, 200, respectively. In the calculations was used a grid with the total 
number of nodes N = 30, the distribution of which noted by markers. 
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Fig. 5.  Subsonic mode with λₒ= 10 at the moment t = 20 ns. 
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The structure of the solution of supersonic mode is much simpler than subsonic and it can 
be represented by two following one after another waves - thermal and hydrodynamic. Its 
propagation velocities in this mode are different, and the temperature wave front is far ahead 
of the front of hydrodynamic one, Fig. 6-9. Front position in each of them corresponds to a 
weak and a strong discontinuity, respectively, in the vicinity of which there is the greatest 
concentration of grid nodes. 

In mode with λₒ=50, Fig. 6,7, the temperature wave velocity comparable with that of the 
shock wave and supersonic heating region is much less than for a medium with a high thermal 
conductivity (λₒ=200), Fig. 8.9, for which the velocity of propagation of the temperature wave 
much higher. 
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Fig. 6.  Supersonic mode with λₒ= 50 at the moment t = 10 ns. 
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In all of these modes at the moment t=10 ns, Fig. 4,6,8 compared the numerical results 
obtained (solid line with markers) with the found self-similar solutions for the problem of 
piston moving at zero temperature background (dashed line)42. By now the numerical solution 
approaches to a self-similar one, which indicates the reliability and quality of the results. The 
highest temperature achieved at the front of the plasma torch, and as expected, is maximal at a 
lower thermal conductivity. For λₒ=10 - Tmax≈64 eV, while for λₒ=200 - Tmax≈43 eV. By the 
time t=20 ns (Fig. 5,7,9) gasdynamical velocity and heat flux at the boundary of the plasma 
torch is equal to zero, which leads to reduction of density on the boundary and to the 
temperature drop throughout the solution domain. In the future, this should lead to a 
separation of the area under consideration from the plasma torch. 
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Fig. 7.  Supersonic mode with λₒ= 50 at the moment t = 20 ns. 
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Features of the dynamic adaptation. From the point of view of constructing 
computational grids with dynamic adaptation brief analysis of subsonic and supersonic 
modes, Fig. 4-9 allows emphasizing the following features. Both modes are characterized by 
three moving boundaries: the front of the plasma torch with known law of motion (2.3), the 
shock front (strong discontinuity) and the front of the supersonic temperature wave (weak 
discontinuity) propagating on the temperature background, the laws of motion are unknown 
and must be determined during solving. All three moving boundaries explicitly allocated. 
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Fig. 8.  Supersonic mode with λₒ= 200 at the moment t = 10 ns. 

Explicit allocation of boundary of the plasma torch and of front of supersonic temperature 
wave allows to exclude from consideration the field of trivial solution. This is especially true 
in non-stationary problems, such as problems of the propagation of waves in which 
perturbation born near one of the boundaries and extends toward the other. At a long time of 
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consideration perturbation covers an area the size of which can be several orders of magnitude 
different from the size of the originally specified area. In such situations, the exclusion from 
consideration areas not covered by perturbation, plays an important role and allows you to 
build cost-effective computational algorithms. 

Explicit allocation of the shock wave front allows to solve problems associated with 
discontinuous solutions. 

Except to moving boundaries problem of propagation of temperature waves include several 
areas of rapid changing in all functions of the solution: temperature, density and velocity. In 
supersonic two areas, in subsonic - three. 

Thus, the dynamic adaptation should take into account behavior of all functions: 
temperature, speed and density, and the presence of moving boundaries. Control function Q 
(6.1) satisfies all these requirements. 
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Fig. 9.  Supersonic mode with λₒ= 200 at the moment t = 20 ns. 
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7 CONCLUSION 

Simulations have shown that the dynamic characteristics of the laser plasma substantially 
related to the degree of nonlinearity of the thermal processes. The main features of solution of 
the hydrodynamic equations with nonlinear thermal conductivity include: the presence of 
three moving boundaries and, depending on the studied mode, two (supersonic) or three 
(subsonic) region of rapid changing of all functions of solution. All moving boundaries 
explicitly allocated. For two of them - the shock wave front and the front of the supersonic 
temperature wave, the law of motion is not known beforehand and determined during solving. 

On an example of the problem under consideration of laser plasma spread showed the 
effectiveness and applicability of the proposed for solving the dynamic adaptation method. 
For studied problem was used adaptation function, which controls the distribution of grid 
nodes, depending on the features of solution. The control function has complicated form and 
consists of several terms. One part of them is determined from diffusion approximation and 
takes into account changes in the size of the area under the influence of the front of the 
plasma torch and of propagation of the weak and strong discontinuities. Another part of the 
terms defined from the principle of quasistationarity and carries out condensation of nodes of 
the computational grid in the areas of high gradients of temperature, density and velocity. 

Application of the dynamic adaptation method allows to obtain numerical solutions on 
grids with an unusually small number of nodes. All calculations use the grids with the total 
number of nodes N=30, despite an increase of the calculation area of more than 5 orders of 
magnitude. 
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