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Summary. In this paper, we obtain a continuous analytical expressions approximating the 
Fermi-Dirac integrals of orders j=-1/2, 1/2, 1, 3/2, 2, 5/2, 3 and 7/2 in a convenient form for 
calculation with reasonable accuracy (1÷3)% over a wide range of degeneration. For 
approximation was used the approach based on the method of least squares. Requirements for 
the approximation of integrals, the range of variation of order j and η adduced Fermi level are 
considered in terms of the use of Fermi-Dirac integrals to determine the properties of metals 
and semiconductors. 
 
1 INTRODUCTION 

Fermi-Dirac statistics are widely used in many of the problems associated with 
semiconductors and metals [1-3]. Interest in the use and calculation of the Fermi-Dirac 
integrals of different orders originated in the 20s of XX century. By this time the first work 
done by Sommerfeld and his co-workers [4,5], and Pauli [6] who has investigated problems of 
electron theory of metals. In these papers to describe degenerate electron gas of metals was 
used a family of functions, called Fermi-Dirac integrals. Because of the substantial 
differences in metals and semiconductors in determining its properties the same family of 
integrals calculated and used differently. First of all, significant differences has the electron 
gas in metals and semiconductors [2,3,7]. 

In metals at low temperatures electron gas is degenerate and obeys quantum Fermi-Dirac 
statistics. The number of valence electrons in the metal, taking part in the electrical 
conductivity, is almost independent of the temperature, so the carrier concentration is constant 
and can be characterized by a specific value of the electrochemical potential, called the Fermi 
energy EF. As the temperature increases in metals and when E>EF degeneracy is lifted, and 
the electron gas of metals obeys the classical Maxwell-Boltzmann statistics and becomes non-
degenerate. 

Quite different situation is in semiconductors. The number of carriers and its mobility are 
dependent on temperature, the presence of impurities and defects. At low temperatures in 
semiconductors the valence band is completely occupied and, according to the Pauli principle, 
the movement within the valence band is not possible. In this regard, at low temperatures in 
semiconductors conduction electron concentration is so small that it behave like a gas of non-
interacting particles obey the classical Maxwell-Boltzmann statistics and the electron gas is 
non-degenerate. To move the free carriers from the valence to the unoccupied conduction 
band requires additional finite energy exceeding the energy band gap, which for 
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semiconductors amounts to Eg<2-3 eV. With increasing temperature, the hot electrons give 
energy to the lattice, the band gap is reduced, and the Fermi level EF energy increases. The 
concentration of free charge carriers in the conduction band increases, determined by 
processes of generation and recombination of electrons from the conduction band and holes 
from the valence band, which occur continuously and parallel. In this situation, the electron 
gas degenerates and obeys Fermi-Dirac statistics. In the molten state semiconductors take on 
the properties of metals. The degeneracy of the electron gas in semiconductors, depending on 
the intensity of external influence can occur before the substance melts, so the description of 
the properties of solid-state semiconductors requires the use of both classical and quantum 
statistics of the electron gas [3,7,8]. The probability that the electron will be in a quantum 
state with energy E is expressed by the Fermi-Dirac function: 
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where EF - Fermi energy, defined as the value of the energy, at which all the states of a 
system of particles that obey Fermi-Dirac statistics, are occupied, kB - Boltzmann constant. 
When the energy is less than the Fermi energy E<EF, the Fermi-Dirac function is equal to 1 
(f(E,T)=1) and all quantum states are filled with electrons. If E > EF, the Fermi-Dirac 
function is equal to 0 (f(E,T)= 0) and corresponding quantum states are not filled. In 
semiconductors at low temperatures, the Fermi energy level is between the valence band (EV) 
and the conduction band (EC), for a few kBT below the conduction band ((EF-EC)/kBT<0), the 
electron gas behaves like a gas of classical particles and obeys Boltzmann statistics 
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In view of the importance of location of the Fermi level relative to the bottom of the 
conduction band and valence band top, especially in the case of non-equilibrium, distribution 
function of the Fermi-Dirac (1) are in the form [4-7] 
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where ε=(E-EC)/kBT - datum level of the electron (the distance to the bottom of the 
conduction band), η=(EF-EC)/kBT - datum Fermi level for electrons, which is an indicator of 
the semiconductor degeneration, EC - the energy level of bottom of conduction band. In case 
of violation of thermodynamic equilibrium the Fermi level splits into electron EFe and hole 
EFh, which correspond to the datum Fermi level for electrons ηe=(EFe-EC)/kBT and holes 
ηh=(EFh-EC)/kBT. In this work will be used the electronic component, and thus the index e in 
the notation will be omitted. In terms of ε and η in [4-7] Fermi-Dirac integral was defined as 
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where j - the order of the integral. 
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In computational practice, usually in semiconductor physics [7-12], the integral (4) is 
replaced by the related function of the form 

( ) ( )
( ) ( ) ( ) ε

ηε
εη

η d
exp11j

1
1jΓ

F

0

j
cj

j ∫
∞

−++
=

+
=

Γ
F ,   (5) 

where Г(x) – gamma function. 
Integral (5) has a number of advantages over the integral (4) described in detail in [9,15], 

namely: 
1. In contrast with Fj, Fj functions exist for negative integer orders. 
2. When using Fj easier to find integral values with half-integer orders j, and also 
interpolation of η arguments. The relationships between the function and its derivative are 
also simplified 
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3. In the non-degenerate η<<0 limits all members of the family Fj(η) are reduced to 
F(η) → еη regardless of the order j. 

Members of the family Fj(η) and related Fj(η) are widely used in the modeling of thermo-
physical properties of semiconductors and metals. For such tasks are important integrals of 
Fermi-Dirac with usually low integer and half-integer indexes 2/7j2/1 ≤≤−  and 

3j1 ≤≤−  [3,7,11,13,14] and with a range of η changes from the classical Boltzmann limit 
(η<<0) to a degenerate Fermi-Dirac (η>0). For such a wide range of η there are table values 
of the integrals of all the above order j. However, when using the Fermi-Dirac statistics in 
modeling of problems of semiconductors and metals is more convenient not tabular but 
analytical representation of integrals. It is desirable to have some efficient algorithm for 
computing integrals, based on the use of relatively simple approximation functions. 

The aim of this work is to obtain a continuous analytical expressions approximating the 
Fermi-Dirac integrals of orders j = -1/2, 1/2, 1, 3/2, 2, 5/2, 3 and 7/2 and in the form 
convenient for calculations with acceptable accuracy in a wide range of degeneration. To 
obtain these analytical expressions approximating the Fermi-Dirac integrals are encouraged to 
use an approach based on the method of least squares. 

In the next section we consider briefly previously developed methods of approximation of 
Fermi-Dirac integrals. 

 

2 OVERVIEW OF METHODS OF WAYS TO APPROACH THE FERMI-DIRAC 
INTEGRALS 

The integral (5), excepting the integral with order cannot be calculated analytically. There 
are a variety of methods associated with it of approximate calculation of the Fermi integrals 
and approximations, such as: the expansion in a series [14-23], the numerical quadrature [24-
28], recurrence relations and interpolation of table values [29-34], piecewise polynomials and 
rational functions [34-48]. 
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Mathematical bases of calculating of the Fermi-Dirac integrals developed in the works of 
A. Sommerfeld  [4,5], J. McDougall and E.C. Stoner [29], P. Rhodes [14], R. B. Dingle [9,15] 
formed the basis for various follow-up procedures of expression Fj(η) or  Fj(η) with an 
appropriate number of significant digits. Presentation of the results of the numerical solution 
of the integrals in the form of tables, beginning with the work of J. McDougall and E.C. 
Stoner in 1938 [29] for the orders of -1/2, 1/2 and 3/2is one of the main. In [9, 14, 15, 24-27, 
29-31] presented tables of Fermi-Dirac integrals for integer and half-integer order of j=-1/2 to 
j=7/2. The highest accuracy of calculations, less than 10-5%, has numerical integration 
methods [24-34]. However, in modeling of properties of semiconductors and metals is 
sufficient accuracy from ± 2% to ± 0,2%, commensurate with typical accuracy of the 
experimental data to determine the carrier densities in semiconductors [12]. 

An alternative to numerical methods, more convenient form for calculation is an 
approximation of the Fermi integrals using analytic functions. In the works of different years 
[16-20, 23, 38-40, 42-47] analytical representation of integrals Fermi-Dirac mainly based on 
the expansion of the expression (5) in series. In [12] J. S. Blakemore presented an overview of 
the analytical approximation methods of Fermi-Dirac integrals (5). Considered methods, 
primarily for the order j=1/2, based on asymptotic expansions of Sommerfeld [4,5]. 
According to the generalization of [42,43], made in [12], to approximate the integral (5) by a 
single expression for the range -∝<η<∝ proposed to use expression of the form, well 
reflecting the asymptotic behavior of the integral 
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where φj(η) - an arbitrary fitting function. Offered in [42] fitting function for order j=1/2 with 
error not exceeding 0.4% has the form 
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where ( ) ( )[ ]{ }24 117.0exp68.016.3350 +−−++= ηηηην . 

The approximating function for η→-∞ leads to the asymptote  ( ) ( )ηπ exp21  and with 
η→+∞ leads to another asymptote 2/3η3/2. 

In [43] offers the fitting function for the order j = 1/2 with accuracy of 0.53%, for the order 
of j = 3/2 with an accuracy of 0.63%. 
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For the order j=1/2 (i.e. for the function F1/2(η) recommended values for the parameters a, 
b and c were a=9.60, b=2.13, c=2.40, so 
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For the j= +3/2 order recommended parameter values, a=14.9, b=2.64, c=2.25 so that 
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Among the proposed methods of approximation in the reviews [36,37] highlighted the 
work of Van Halen's, and of P.D.L. Pulfrey [16], where the results of approximation of the 
Fermi-Dirac integrals Fj(x) by short series based on the classic decomposition [9, 10, 19] 
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P. Van Halen and D. L. Palfrey have presented approximations of Fermi-Dirac integrals of 
the form (5) of orders j= -1/2, 1/2, 1, 3/2, 2, 5/2, 3, 7/2. The variation range of η for each 
order j consists of several - from the classical limit of the Boltzmann (η ≤ 0) to a degenerate 
Fermi-Dirac η > 4 (or 5), individually selected range of the transition from the non-
degeneracy to the weak degeneration (0 < η ≤ 4 or 0 < η ≤ 5). For each of the ranges of 
changes of η proposed smooth, continuous on an interval approximating expression on the 
basis of the expansion (12), the error is less than 10-5. The advantage of the method proposed 
by the authors is that sufficiently high accuracy over a wide range of η and j can be obtained 
using a simple approximate expressions that are very closely related to the short form of the 
classical expansions in the series of (12). The disadvantage is the lack of a single analytic 
expression for the approximation of integrals on the whole interval -∞ < η < ∞. 

One of the common approaches to the approximation of Fermi-Dirac integrals is the use of 
Chebyshev rational approximations [21,38-40]. In [40] obtained the Chebyshev 
approximations for F1/2(η), based on the tables of J. McDougall and E.C. Stoner [29]. These 
approximations were used a polynomial of the fifth degree, with a relative error of less than 
5x10-4. The approximating expressions formulated for 6 ranges of argument η. 

In [38], were presented the Chebyshev rational approximations for Fermi-Dirac integrals 
F1/2(η) (j =-1/2, 1/2 and 3/2). The approximating expressions were formulated for three ranges 
of η: -∞ < η ≤ 1, 1 < η ≤ 4, 4 < η < ∞. The maximum relative error vary depending on the 
function and the interval in question, but not exceed 10-9. Using Chebyshev rational 
approximations developed in [38], in paper [39] the authors have approximated integrals of 
Fermi-Dirac of orders j=0, 1/2, 1, 3/2 and 2, breaking the range of -4 ≤ η ≤ 20 into two. The 
relative error of approximation is 5x10-6. 

Taking into account characteristics of the electron gas in metals in [44,45] were proposed a 
convenient approximation for the integrals of Fermi-Dirac type (4) of the order j = k+1/2, 
which allows to express the integrals )(2/1 ξ+kF  through transcendental Gamma function 
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function. In [45] by means of approximation of integrals (13) have been determined the most 
important thermophysical and thermodynamic characteristics of the electron Fermi gas of 
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metals such as specific heat, thermal diffusivity and thermal conductivity in a wide 
temperature range. 

Despite the longstanding ongoing work in the field of approximation of Fermi-Dirac 
integrals you cannot build, especially for semiconductors, common expressions for all 
interesting orders j. Taking into account the fact that the need to approximate the function on 
an infinite interval -∞<η<+∞, it is difficult to specify such approximating function, which 
could meet once both asymptotic behavior (when η << 0, F(η) → eη , when η >> 0, 
F(η) → η3/2 ). As a result, the original interval -∞<η <+∞ have to divide in at least two and 
in each choose its best parameters. As a result, for the construction of acceptable 
approximation formulas in the range of definition, broken into several intervals in each of 
them to achieve the accuracy required have to vary the number of terms (usually not 
exceeding 10). Almost all proposed so far approximations were a set of formulas, each of 
which is used in one range of values of η. Such approximations are only piecewise smooth 
and even piecewise continuous. Uniform type of approximating formulas failed to pick up, 
because the qualitative behavior of the Fermi-Dirac functions for different values of η varies 
greatly. 

Since the investigations of fundamental properties of materials such as metals and 
semiconductors undergoing various external effects are of interest in several areas of science, 
particularly in the development of new materials especially with new properties. Solving such 
problems assumes use of mathematical modeling, the basic mathematical apparatus in which 
is a system of equations in partial derivatives. Therefore, not only approximating functions of 
family of integrals (5) or (4), and its derivatives must be continuous, smooth, defined in a 
wide range of argument η. It is desirable to have a convenient for computing form of 
approximating functions and an acceptable error of approximation. 

 

3 A SUMMARY OF THE METHOD OF APPROXIMATION THE FERMI-DIRAC 
INTEGRALS 

To obtain continuous analytical expressions approximating the Fermi-Dirac integrals, we 
used an approach consisting of two stages. 

In the first stage all the integrals Fj(η) with indexes j = -1 / 2, 1/2, 1, 3/2, 2, 5/2, 3 and 7/2 
were solved numerically using the techniques outlined in [16,29, 30] with a step Δη. The 
results are presented in tables 

φj,ℓ ≈ Fj(ηℓ), ℓ=0,…,n-1      (14) 

for all j. Because of the bulkiness tabulated values of the Fermi-Dirac integrals are omitted. 
Close to the used discrete integral values can be found in [29,30]. 

In the second stage was used the least squares method, which allows on the basis of table 
values to formulate analytical expressions for the approximation of the Fermi-Dirac integrals. 
The least squares method includes a sequence of the following: definition of the range of the 
degeneration parameter η, the choice of the approximating function and criteria of 
approximation. 

The range of the degeneration parameter nin the general case should vary from non-
degenerate values to strong degeneration -∞<η<+∞. However, the solution of specific 
problems does not require an infinite interval, each specific statement of characterized by 
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their own limitations [8, 16-21,24,42,43]. For an acceptable accuracy of determination the 
thermophysical characteristics of metals and semiconductors we allow limitations on n in the 
range of -10 ≤ η ≤ 10. 

For approximating functions were specified requirements of correct asymptotic behavior in 
interval of approximation and the minimum error between original and approximating 
functions. 

In accordance with the classical concepts [6], close to the original function on the 
asymptotic is the function 
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where 

( ) ( )( )
j

m

0i

i
ijm,j xaxlnxP ⎥

⎦

⎤
⎢
⎣

⎡== ∑
=

F      (16) 

is algebraic polynomial of degree m, where a0, a1, ..., am are unknown coefficients to be 
determined, j = -1/2, 1/2, 1, 3/2, 2 5/2, 3 and 7/2 - order of Fermi-Dirac integral. 

As a criterion permitting one to get the best approximation of the function Pj,m(x) given in 
tabular form by its approximate values, in accordance with [48, 49], was used criterion of the 
method of least squares. 

Using tables (14), we represent function ln(Fj(η)) for each order j in tabular form, with 
x = ηℓ, -10 ≤ ηℓ ≤ 10 

 yj,ℓ=ln(Fj(ηℓ))=ln(φj,ℓ), ℓ = 0,…,n. 

According to the criterion of least squares method it is necessary to find such a polynomial 
Pj,m(x) of degree m<n, so that value of the standard deviation of Pj,m(ηℓ) from the function 
values yj,0, yj,1, ..., yj,n would be minimal 
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A minimum of standard deviation ( )jm,j y,Pρ   is reached at the same values of ai (i= 0, ..., 
m) for each order of j, that minimum of the function [49] 
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Thus, using (17-19) for determining coefficients [a0, a1, …, am]j of the polynomial (16) it is 
necessary to find the minimum of function (18). The simplest method of solutions is to use 
the  necessary criterion of function extremum σj(a,y)  
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Calculating the partial derivatives (20), we obtain a system of m+1 linear algebraic 
equations for each order j of Fermi-Dirac integral 
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Solving this system with respect to ai, we find the coefficients of desired polynomial  for 
each order j. The system of equations (21) was solved by the lower relaxation method [48,49]. 

The function that approximates the integral (5) of the order j, according to (15,16) wil be in 
the form 
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An error estimate for approximating function (22) is calculated using the standard 
deviation of the table values (14) 
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In addition, also used a number of these estimates [48]: 
relative error 
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maximum relative errov on the interval of η  
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If the desired relative error in some area η is not reached, the integral will be calculated 
with step smaller a few times. Further, the procedure of construction of approximating 
function was repeated. 
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4 RESULTS OF APPROXIMATION 
Using the algorithm (14-25) was performed approximation of Fermi-Dirac integrals of 

orders j=-1/2, 1/2, 1, 3/2, 2, 5/2, 3, 7/2 by uniform expressions for each order in range -
10 ≤ η ≤ 10. The exponential approximations of integrals were made with the indicators 
Pj,m (x) for m = 4, 5, 6, 7, 8, 9. 
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The coefficients of polynomials ai (i=0, ..., m) in the exponent of approximating functions 
(26) for m = 4÷9, as well as the maximum error in the approximation interval are presented in 
Appendix 1. 

In the graphical presentation approximating functions of Fermi-Dirac integrals for integer 
and half-integer orders shown in Figure 1. 

Figure 2 shows the dependence of the maximum approximation error on the interval [-10, 
+10] on the degree of the polynomial in the exponent of approximating function. The figure 
shows that the error rate ( ) %0,3f%0,2 jmax ≤≤ δ  provided by approximations with 
polynomials of degree 5th in the exponent for integrals with orders 3/2 and 2, whereas the 
integrals with the order of 3, 5/2, 7/2 polynomial of the same degree in the exponent of 
approximation function gives an error of less than 2%. For integrals with order of 1 and 1/2 of 
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Figure 1. Approximating functions of Fermi-Dirac integrals for integer and half-integer orders. 
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the error from 2% to 3% is provided by approximations with polynomials of 6th and 7th 
degrees in the exponent, respectively. Thus, the exponential approximation with a small 
number of terms gives a level of approximation error that commensurate with the accuracy of 
the experimental data to determine the carrier densities in semiconductors [12]. 

The relative error does not exceed 3%, is maintained only within the interval of 
approximation for the integrals as integer and half-integer orders, outside this range  the error 
starts to increase sharply, so extrapolation using the obtained approximating functions leads to 
large errors [48,49] . In case of necessary to approximate integrals in a wider range of 
variation of the argument must use outlined approach of approximating in the modified range. 

5 CONCLUSION 
In this paper, for the Fermi-Dirac integrals of order j=-1/2, 1/2, 1, 3/2, 2, 5/2, 3 and 7/2 

were obtained continuous analytical expressions common for every order in a wide range of 
degeneration -10 ≤ η ≤ 10. For approximation was used the approach based on the least 
squares method. The approximating functions within the approximation interval have an error 
not exceeding (1÷3)%. Increasing the terms in the exponent can reduce the error, as shown in 
Figure 2. Common for the entire range of definition continuous analytical expressions 
simplify calculation of the properties of metals and semiconductors and their further use in 
mathematical models. 

This work was supported by RFBR (projects №№ 16-07-00263, 15-07-05025). 

 

Figure 2. The dependence of the relative error of approximation on the degree of the 
polynomial in the exponent of approximating function for different orders j (in percent). 
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APPENDIX 1. THE COEFFICIENTS ai (i=0, ..., m) OF THE EXPONENT  

( ) ( )
j

m

0i

i
ijj )xaexp(xfx ⎥⎦

⎤
⎢⎣

⎡=≈ ∑
=

F  

ai (i=0,…,m) The order of the Fermi-Dirac integral j = -1/2 
m = 4 m = 5 m = 6 

a0 -0.61546784826395 -0.615467848263953 -0.547817220021095 
a1 0.602676584217057 0.615426846473623 0.615426846473625 
a2 -0.0610134265391913 -0.0610134265391913 -0.0751504337606228 
a3 -0.000439409133854508 -0.00103148811525877 -0.0010314881152587 
a4 0.000249625322131259 0.000249625322131258 0.000671653533828143 
a5  5.30239768412911×10-6 5.30239768412867×10-6 
a6   -3.07965492435977×10-6 
( )jmax fδ  11,2% 10,8% 4,6% 
 m = 7 m = 8 m = 9 

a0 -0.547817220021095 -0.522116216472 -0.520853982328172 
a1 0.62180892681873 0.6218089268187 0.62538029600023 
a2 -0.0751504337606216 -0.0843580232437304 -0.0849911513781025 
a3 -0.0016030745760407 -0.00160307457603949 -0.00222978780816163 
a4 6.71653533828143×10-4 0.00117561624161588 0.00120165913801942 
a5 1.78158795239303×10-5 1.78158795239198×10-5 4.25661892462514×10-5 
a6 -3.0796549243596×10-6 -1.177259427073×10-5 -1.2129242467151×10-5 
a7 -7.70854081325175×10-8 -7.70854081325727×10-8 -4.26709221627158×10-7 
a8  4.63428174069414×10-8 4.79331492203198×10-8 
a9   1.62622326417778×10-9 
( )jmax fδ  4,5% 2,0% 1,9% 

ai (i=0,…,m) j = 1/2
m = 4 m = 5 m = 6 

a0 -0.30031811734647 -0.300318117346469 -0.275999786315936 
a1 0.750669866250104 0.783771806756508 0.783771806756508 
a2 -0.0460276506527707 -0.0460276506527708 -0.0510854399040026 
a3 -0.00103123932933865 -0.00256097963187296 -0.0025609796318731 
a4 0.000155972246039082 0.000155972246039082 0.0003062432905028 
a5  1.36333739890211×10-5 1.36333739890214×10-5 
a6   -1.09132901270981×10-6 
( )jmax fδ  9,5% 6,5% 4,98% 
 m = 7 m = 8 m = 9 

a0 -0.275999786315927 -0.276775359016042 -0.276775359016034 
a1 0.798663570658078 0.798663570658095 0.799100538145126 
a2 -0.0510854399040039 -0.050808847478201 -0.050808847478213 
a3 -0.00388849436691441 -0.003888494366913 -0.003951991369661 
a4 0.000306243290502822 0.000291173615654 0.000291173615654 
a5 4.25600395211334×10-5 0.000042560039521 0.000045013483446 
a6 -1.09132901271×10-6 -0.000000832583687 -0.000000832583687 
a7 -1.77355398725066×10-7 -0.000000177355399 -0.000000212078781 
a8  -0.000000001373023 -0.000000001373023 
a9   1.624418649316369×10-10 
( )jmax fδ  2,7% 2,63% 2,62% 
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ai (i=0,…,m) The order of the Fermi-Dirac integral j = 3/2 
m = 4 m = 5 m = 6 

a0 -0.165160502970019 -0.165160502970019 -0.148659357955996 
a1 0.832956727391009 0.86009920251184 0.860099202511838 
a2 -0.034270731578089 -0.034270731578089 -0.0377026823061288 
a3 -0.00112227522930316 -0.00237661069929918 -0.00237661069929911 
a4 9.37237799774546×10-5 9.37237799774557×10-5 0.000195689835665688 
a5  1.11789069960535×10-5 1.11789069960533×10-5 
a6   -7.40518675978303×10-7 
( )jmax fδ  7,8% 3,5% 2,5% 
 m = 7 m = 8 m = 9 

a0 -0.14865935795599 -0.144360069633876 -0.144360069633868 
a1 0.871991792148592 0.871991792148618 0.877424534200941 
a2 -0.0377026823061285 -0.0392359371305346 -0.0392359371305399 
a3 -0.00343676637225343 -0.00343676637225409 -0.00422621374149657 
a4 0.000195689835665719 0.000279226655571119 0.00027922665557153 
a5 3.42797945071527×10-5 3.42797945071525×10-5 6.47830429367779×10-5 
a6 -7.40518675978359×10-7 -2.17484037670981×10-6 -2.17484037670917×10-6 
a7 -1.41636342802288×10-7 -1.41636342802187×10-7 -5.73346207590614×10-7 
a8  7.61117948971013×10-9 7.6111794897629×10-9 
a9   1.624418649316369×10-10 
( )jmax fδ  1,17% 0,94% 0,44% 

ai (i=0,…,m) j = 5/2
m = 4 m = 5 m = 6 

a0 -0.0768619544439604 -0.0768619544439613 -0.0730704871698116 
a1 0.894634070051121 0.919228896777874 0.919228896777872 
a2 -0.025050293646251 -0.0250502936462509 -0.0258425996695149 
a3 -0.00117276343025441 -0.00231486385636026 -0.00231486385636046 
a4 4.63301130675959e-005 4.63301130675965e-005 6.99826081733829e-005 
a5  1.02281466571666e-005 1.02281466571665e-005 
a6   -1.72598705506176e-007 
( )jmax fδ  5,9% 1,9% 1,8% 
 m = 7 m = 8 m = 9 

a0 -0.0730704871698169 -0.0733183068334995 -0.0733183068335204 
a1 0.928304012988676 0.928304012988668 0.93148132960755 
a2 -0.0258425996695147 -0.0257538162991899 -0.0257538162991905 
a3 -0.00312764170866409 -0.00312764170866535 -0.00359140854603623 
a4 6.99826081733871e-005 6.51231921667828e-005 6.51231921667551e-005 
a5 2.80219216894084e-005 2.80219216894125e-005 4.60217543878372e-005 
a6 -1.72598705506065e-007 -8.87778037750309e-008 -8.87778037731255e-008 
a7 -1.09613010042557e-007 -1.0961301004269e-007 -3.65513428284697e-007 
a8  -4.46856533641514e-010 -4.46856533638775e-010 
a9   1.20258111247753e-009 
( )jmax fδ  0,2% 1,1% 1% 
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ai (i=0,…,m) The order of the Fermi-Dirac integral j = 7/2 
m = 4 m = 5 m = 6 

a0 -0.02997411859528 -0.0299741185952794 -0.0346926424591381 
a1 0.93544135494087 0.955222985782662 0.955222985782661 
a2 -0.0176792910519343 -0.0176792910519343 -0.0166979202806328 
a3 -0.00111122289375512 -0.00202539159461124 -0.00202539159461129 
a4 1.11415191089538e-005 1.11415191089541e-005 -1.80158070437197e-005 
a5  8.14726772065816e-006 8.14726772065664e-006 
a6   2.11752277872335e-007 
( )jmax fδ  4,9% 1,5% 1,3% 
 m = 7 m = 8 m = 9 

a0 -0.0346926424591368 -0.0373504596918224 -0.0373504596918069 
a1 0.961597271258725 0.961597271258719 0.963706845501861 
a2 -0.0166979202806329 -0.015750063149218 -0.0157500631492198 
a3 -0.00259362232608051 -0.00259362232608126 -0.00290017062601322 
a4 -1.80158070437e-005 -6.96582145708335e-005 -6.96582145707411e-005 
a5 2.05290664912205e-005 2.05290664912336e-005 3.23737053040674e-005 
a6 2.11752277872376e-007 1.09844901684079e-006 1.09844901684007e-006 
a7 -7.59153817940072e-008 -7.59153817937321e-008 -2.4355154135472e-007 
a8  -4.70522619149915e-009 -4.70522619148937e-009 
a9   7.84230362046263e-010 
( )jmax fδ  0,56% 0,39% 0,22% 

ai (i=0,…,m) j = 1
m = 4 m = 5 m = 6 

a0 -0.23355192692012 -0.23355192692012 -0.207827331088282 
a1 0.792171153428796 0.818976492381555 0.818976492381556 
a2 -0.0397736574845399 -0.0397736574845399 -0.0451239253185927 
a3 -0.00104732754616124 -0.00228608293910271 -0.00228608293910271 
a4 0.000123938596448891 0.000123938596448891 0.000282899418192845 
a5  1.10400540045295e-005 1.10400540045283e-005 
a6   -1.15443768473466e-006 
( )jmax fδ  8,6% 4,7% 2,9% 
 m = 7 m = 8 m = 9 

a0 -0.207827331088279 -0.19995024794072 -0.19995024794071 
a1 0.831283483122959 0.831283483122962 0.837135515120167 
a2 -0.0451239253185932 -0.0479331288039901 -0.047933128803997 
a3 -0.0033831800769013 -0.00338318007690159 -0.004233555673572 
a4 0.000282899418192857 0.000435954162848029 0.000435954162848 
a5 3.49458993587348e-005 3.49458993587577e-005 0.000067803337479 
a6 -1.15443768473472e-006 -3.78237757884398e-006 -0.000003782377579 
a7 -1.46571706647323e-007 -1.46571706647527e-007 -0.000000611600217 
a8  1.39450739762592e-008 0.000000013945074 
a9   0.000000002175482 
( )jmax fδ  1,66% 1,13% 0,64% 
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ai (i=0,…,m) The order of the Fermi-Dirac integral j = 2 
m = 4 m = 5 m = 6 

a0 -0.114298997515236 -0.114298997515235 -0.105264307458867 
a1 0.866488085382162 0.892787019661956 0.892787019661958 
a2 -0.0293596626824282 -0.0293596626824282 -0.0312387208381031 
a3 -0.00115838324848193 -0.00237373615728598 -0.00237373615728595 
a4 6.77236352648342e-005 6.77236352648336e-005 0.000123551985881182 
a5  1.08314860417262e-005 1.08314860417263e-005 
a6   -4.05448028772157e-007 
( )jmax fδ  6,9% 2,6% 2,2% 
 m = 7 m = 8 m = 9 

a0 -0.105264307458862 -0.103707515355261 -0.103707515355258 
a1 0.903683099285018 0.903683099285027 0.90840706100056 
a2 -0.0312387208381033 -0.031793919471891 -0.031793919471895 
a3 -0.00334505871848734 -0.003345058718487 -0.004031511179107 
a4 0.000123551985881213 0.000153801053123 0.000153801053123 
a5 3.19966920541703e-005 0.000031996692054 0.000058520347408 
a6 -4.05448028772211e-007 -0.000000924822523 -0.000000924822523 
a7 -1.29768277206364e-007 -0.000000129768277 -0.000000505155302 
a8  0.000000002756043 0.000000002756043 
a9   0.000000001756124 
( )jmax fδ  0,84% 0,78% 0,30% 

ai (i=0,…,m) j = 3
m = 4 m = 5 m = 6 

a0 -0.114298997515236 -0.114298997515235 -0.105264307458867 
a1 0.866488085382162 0.892787019661956 0.892787019661958 
a2 -0.0293596626824282 -0.0293596626824282 -0.0312387208381031 
a3 -0.00115838324848193 -0.00237373615728598 -0.00237373615728595 
a4 6.77236352648342e-005 6.77236352648336e-005 0.000123551985881182 
a5  1.08314860417262e-005 1.08314860417263e-005 
a6   -4.05448028772157e-007 
( )jmax fδ  5,4% 1,56% 1,6% 
 m = 7 m = 8 m = 9 

a0 -0.105264307458862 -0.052712156661734 -0.052712156661728 
a1 0.903683099285018 0.947159393500042 0.95013151782922 
a2 -0.0312387208381033 -0.020167390078839 -0.020167390078846 
a3 -0.00334505871848734 -0.002891942854199 -0.003323830787203 
a4 0.000123551985881213 -0.000017102293591 -0.000017102293591 
a5 3.19966920541703e-005 0.000024715803552 0.000041403407348 
a6 -4.05448028772211e-007 0.000000667578416 0.000000667578416 
a7 -1.29768277206364e-007 -0.000000095051469 -0.000000331229698 
a8  -0.000000003210006 -0.000000003210006 
a9   0.000000001104882 
( )jmax fδ  0,58% 0,51% 0,23% 
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