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Summary. Were analyzed possibilities of thermodynamic, kinetic and molecular dynamics 
approaches to the investigation of the kinetic properties moving interfaces in metals with 
different crystallographic lattices: Al, Cu (fсc) and Fe (bcc) in a wide range of solid phase 
overheating and overcooling of liquid - ( ) msm TTT 2.16.04.0 ≤<÷ l . On the basis of 
extensive molecular dynamics simulation, the values of the kinetic velocity )( lsTυ  for all 
metals in the specified range were determined. By approximating the results were built 
analytical expressions of velocity )( lsTυ  for all metals in the whole temperature range under 
consideration. Obtained analytical expressions for the velocity )( lsTυ  were used for the 
formulation of a kinetic version of Stefan problem in which eliminated the main contradiction 
of the classical Stefan problem associated with the use of equality of equilibrium melting 
temperature mT  to interface temperature lsT . 
 

1 INTRODUCTION 
The widespread use in the past two decades of an ultrashort pulse (picosecond and 

femtosecond) laser action on a variety of materials to generate nanoparticles and 
nanostructures [1,2], the creation of metamaterials [3], by ablation in gases and liquids [4,5] 
cause increased interest in the rapid phase transitions of the 1st kind. Analysis of the 
processes caused by pulsed laser action leads to the consideration of a number of important 
problems of the fundamental plan, which at high heating rates are attributed features of 
homogeneous and heterogeneous melting/solidification mechanisms and evaporation and the 
associated limit overheating and overcooling of material. Understanding the 
melting/solidification processes is also of great interest for applied problems of photonics [6], 
micromachining [7], the creation of new materials [8, 9], optimization of superfast modes of 
laser micromachining of materials [10], and others. In spite of the fact that the processes of 
melting/crystallization were studied over one hundred years, beginning with the famous 
Stephen's formulation [11] theme is still widely studied and keenly debated [12] – [14]. 

Melting of the solid and liquid solidification are a widespread phenomena in nature. There 
are two mechanisms of melting/crystallization of metals: heterogeneous (or it is also called 
surface or front) and homogenous (volumetric). In the first case, in the framework of classical 
thermodynamics [15], the melting of solids and liquid solidification relate to the phase 
transformation of the first kind flowing at a certain (equilibrium) temperature Tm, which 
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corresponds to the equality of the Gibbs free energy of the solid and liquid states. 
Heterogeneous mechanisms for melting/crystallization corresponds to the motion of a 
continuous medium with a strong discontinuity surface, which abruptly changed 
thermophysical and optical characteristics: internal energy ε (enthalpy H), the coefficients of 
thermal conductivity λ and heat capacity Cp, density ρ, pressure p. Homogeneous melting 
mechanism is characterized by the birth of a new phase (liquid) in a volume of overheated 
crystal, and in this paper will not be considered. 

A theoretical analysis of the dynamics of phase transitions of the first kind leads to 
different variants of the Stefan problem [16, 17], under which in mathematical physics implies 
a wide class of problems with moving boundaries, is described by equations of parabolic or 
elliptic type. The simplest approach to the mathematical formulation of the heterogeneous 
processes of melting/solidification was realized in the XIX century by Stephen [11] and others 
[18]. The classic version of the Stefan problem, includes a quasi-linear equation of heat 
conduction in the area with beforehand unknown moving boundary Гsl(t) that separates the 
solid s and liquid l phases. Heterogeneous phase transition is described as the boundary 
conditions at the interface Гsl(t) 
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Equation (1) is a differential Stefan condition, having a simple physical meaning: the speed 
of the phase boundary vsl is determined by the difference between the heat flows with 
absorption or emission of on this boundary volumetric heat of phase transition Lm. The 
equality temperature (2) Ts=Tl at the interface to the equilibrium melting point Tm is 
phenomenological equation of state, which determines the equilibrium ratio (or quasi-
equilibrium) between the thermodynamic parameters of the system. 

As is known, the lack of phase equilibrium is a necessary condition for the occurrence of a 
phase transition. However, in the classic version of Stefan problem nonequilibrium phase 
transformation is clearly not used (2). This approach and its various modifications are widely 
used to describe the phase transitions and are, of course, a certain area of applicability, but the 
issue of its boundaries for a number of practically important cases remain open. 

The driving force of phase transitions of the first kind is the difference of Gibbs free 
energy ΔG at the interface between the two phases. One can show that at a constant pressure 
at the interface ΔG is linearly proportional to the overheating/undercooling ΔT 

eqT
TLTSG Δ

=Δ⋅−=Δ
   

where ms TTT −=Δ l      

The appearance of condition ΔG≠0 leads to that the processes at the interface solid-liquid 
Гsl(t) can flow in conditions of significant violation of local thermodynamic equilibrium, 
characteristic for intensive external influence. In addition to the thermodynamic 
nonequilibrium interface of phase transitions of the first kind includes kinetic nonequilibrium 
associated with molecular-kinetic processes at the interface. In the case of melting-
crystallization kinetic nonequilibrium characterized by motion speed of phase interface 
surface vsl, depending on the deviation of the phase transition temperature Tsl from the 
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equilibrium temperature Tm, i.e. the magnitude of overheating/undercooling. A significant 
deviation from the equilibrium temperature makes inappropriate use of the phenomenological 
condition (2) of constancy of temperature at the interface Tsl=Tm used in the classic version of 
the Stefan problem. 

The aim of this work is a detailed study of the kinetic properties of interfaces of 
heterogeneous melting/crystallization of metals in a wide temperature range of solid 
overheating and undercooling liquid with follow-up using of the results for mathematical 
formulation of a kinetic version of Stefan problem. 

 

2 KINETIC PROPERTIES OF INTERPHASE BOUNDARIES OF 
HETEROGENEOUS MELTING/CRYSTALLIZATION OF OF PURE METALS 
Fast phase transformations of first kind including melting/solidification are characterized 

by the occurrence of metastable overheated/undercooled states. In recent years, in many 
theoretical and experimental studies special attention is paid to fundamental problems in 
which the solid can be overheated and the liquid can be undercooled. 

The most important kinetic characteristic of heterogeneous phase transformations is the 
mobility of the interface defined by the speed ( ) ( )lll sss T Τυ=Δυ=υ , depending on the 
magnitude of overheating/undercooling of the interface ms TTT −=Δ l  [19]. To determine the 
temperature dependence ( )Ts Δυ l  there are several directions [20, 21], based on the 
thermodynamic, kinetic and molecular-dynamic approaches. 

2.1 Thermodynamic approach 
Thermodynamics is a macroscopic theory, in which from an energy point of view, we 

consider the properties of macroscopic bodies in a state of equilibrium. This allows 
conclusions of thermodynamics have a great communion. In equilibrium thermodynamics one 
way to describe the equilibrium processes is the theory of thermodynamic potentials. The 
method of the thermodynamic potentials is based on the possibility of introduction for 
equilibrium processes the functions of the state, total differentials of which describe the 
change of the state of a thermodynamic system. Basic equality of thermodynamics of 
equilibrium processes is usually presented in the form of 

=dST dU  + dVp   or  =dU =dST dVp−    (3) 

Depending on the choice of two independent parameters, you can enter the thermodynamic 
potentials, the differentiation of which enables to determine the other unknown parameters of 
state. Generally, the thermodynamic potential can be a function of different parameters. In 
this record the internal energy is defined as a function of entropy and volume: U=U(S,V). It is 
a function of the state and has a total differential with respect to its variables. By means of 
total differential dU you can determine the temperature T and the pressure p. However, the 
use as two independent variables entropy S and volume V is inconvenient in that it is very 
difficult to control it in the experiment. Therefore, usually as two independent variables 
selected pressure p and temperature T. 

Sequentially converting the internal energy ε in the first in the enthalpy H=H(S,p) and then 
in Gibbs energy G=G(T,p) 
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pVH += ε  ,      (4) 
STpVSTHG −+=−= ε      (5) 

The total differential of enthalpy considering the basic identity of thermodynamics (3) 
takes the form: 

VdpTdSVdppdVddH +=++= ε     (6) 

Using (3) and (5) can obtain a total differential of the Gibbs energy,  

VdpSdTdG +−=            (7) 

which is convenient because the independent variables T and p can be easily modified and 
controlled in the experiment. 

After reaching the equilibrium state of the system Gibbs potential takes a minimum value 
and becomes constant: dG=0. It allows the use condition of the minimum of the Gibbs 
potential for describing equilibrium states in which T=const and p=const. 

The thermodynamic systems in equilibrium does not necessarily have to be a homogeneous 
medium. In equilibrium state can be system composed of several different phases with 
different physical and chemical properties, spatially separated by time invariant interfaces. 

Most simply described multiphase thermodynamic systems, parts of which are in 
equilibrium states, and through the interphase boundaries is no matter, energy and momentum 
transport. In this case, such thermodynamic system is in equilibrium state and to describe it 
are applicable equilibrium thermodynamics methods. 

Taking into account that during phase transformations each of the phases is a system with 
variable mass, in the thermodynamic description was introduced the concept of chemical 
potential η(p,T), by which the system takes into account the exchange of not only energy, but 
also mass (particles). To define it, in the expression for thermodynamic Gibbs potential was 
introduced formally term, which takes into account the possibility of changing the number of 
particles in a homogeneous system (similarly we can proceed with other potentials): 

dNVdpSdTdG η++−= ,      (8) 

where dN determines a number of system particles. If the thermodynamic potential is given as 
a function of temperature and pressure, the chemical potential value is expressed as: 
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If through the interphase boundaries is no macroscopic transfer, and the phases themselves 
are in a state of thermodynamic equilibrium, such a thermodynamic system, in spite of its 
heterogeneity, will be in a state of thermodynamic equilibrium. For the phase equilibrium in 
one-component two-phase system should be carried out at the same time conditions of the 
thermal and mechanical equilibrium T1=T2=Teq, p1=p2=peq as well as the condition of 
equality of the Gibbs energy, which consists in the requirement of absence of macroscopic 
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transport of molecules (atoms) of the substance from one phase to another: η1(p,T)= η2(p,T). 
The equality η1(p,T)= η2(p,T) can be solved with respect the variables T and p represent the 
curves and the equilibrium of two phases: in the form T=T(p) or p=p(T). In case of liquid-
solid interface Гsl we will obtain equilibrium melting curve Tm=T(psl). For liquid-gas interface 
Гlv we will obtain curve of equilibrium evaporation – psat=p(Tlv). 

It should be noted that as in the case of equilibrium of various phases and phase 
transformations the processes at the interface are statistical in nature. At the interface between 
a liquid and vapor occurs a constant process of moving molecules from liquid to vapor and 
back again. At equilibrium, these counter processes compensate each other, and at input and 
output of heat one of these processes (transfer of molecules from the water into vapor or vice 
versa) begins to dominate, and this leads to a change amount of the material in different states 
of aggregation. 

If components of the thermodynamic system are not in equilibrium with each other, then 
there are thermodynamic flows through their interfaces. At the same time will take place 
conversion process from one state to another, ie, the phase transformation. Assuming 
occurring in the system processes a quasi-static and flows – infinitely small, you can use the 
methods of equilibrium thermodynamics to describe a nonequilibrium system. In this case it is 
assumed infinitesimal difference in the thermodynamic parameters of the various parts of the 
system. Classic version of Stefan problem [11] is based on this assumption. 

The driving force of phase transitions of the 1st kind is determined by the free energy 
difference between the two phases at the interface Г(t) (or overheating/undercooling value 
ΔT). Taking into account that in the process of phase transitions of the 1st kind at the interface 
number of variables undergo abrupt changes, in the thermodynamic equations the differential 
symbol would be replaced by difference between the corresponding value dF≈ΔF at the 
equilibrium phase transition temperature Teq and the excess Gibbs free energy for the two 
phases at the interface defined from (5) and (7) can be written in two ways: 

( ) ( ) ( ) STVpSSTVVpG eqeqeqeq Δ−Δ+Δ=−−−+−=Δ εεε 212121    (10) 

TSpVG Δ−Δ=Δ       (11) 

where 212121 ,,,, SSSVVVTTTppp eqeq −=Δ−=Δ−=Δ−=Δ−=Δ εεε , Teq, peq – 
equilibrium temperature and pressure, respectively. In the case of melting, Teq=Tm, peq=p(Tm), 
in case of evaporation – Teq=Tb, peq=psat(Tb) where Tb - the equilibrium boiling temperature 
under normal conditions, psat - pressure of the saturated vapor. 

Equilibrium. In equilibrium state ΔG=0 equality (10) takes the form: 

0=Δ−Δ=Δ−Δ+Δ STHSTVp eqeqeqε  
where the difference of enthalpy VpH eqΔ+Δ=Δ ε  is known as the equilibrium latent heat of 
transition 

STHL eqeq Δ=Δ= .      (12) 

At constant pressure, P=const, from the equation (11) implies that the free energy 
difference is linearly proportional to undercooling (overheating): 
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eqT
TLTSG Δ

=Δ⋅−=Δ      (13) 

In the future, identifying free-energy difference with the the speed of phase transformation, 
we find that the rate of conversion in the thermodynamic approach, at constant pressure for 
small deviations from the equilibrium is linearly proportional to overheating (undercooling) 
ΔT 

TΔ≈ μυ       (14) 

where ΔT=Tsl-Tm, µ – the constant of proportionality between the normal speed of boundary 
and its undercooling. Equation (14) in appearance coincides with the well known relation for 
determining the linear crystal growth rate obtained on the basis of classical molecular-kinetic 
models, in which the proportionality constant µ is called the kinetic coefficient [22, 23]. The 
main use of the relation (14) and its different modifications [24, 25] has found in the 
description of processes of melting-solidification, where the coefficient µ is the main 
parameter characterizing mobility of the boundary crystal-melt. Disadvantages of this 
approach are that the constant, judging by its dimensions [cm s-1 K-1], has no clear physical 
meaning and is chosen experimentally for each material separately. Comparison with 
experiment shows that the equation (14) gives good agreement mainly at low degrees of 
undercooling [26, 27], ie in the vicinity of the temperature Tm. Despite the great importance of 
this feature, there are only a few successful experiments on measuring the kinetic coefficient 
in metals and alloys [28, 29]. The main difficulties of experimental determination related to 
the great complexity of the measurement of the melt undercooling at the solidification front. 

Thus, the kinetic coefficient µ determined from the thermodynamic approximation, give a 
good description of the behavior of the front near the equilibrium melting point Tm, where the 
temperature dependence of the speed is mainly controlled by the difference in the free 
energies of the crystal and a liquid phase. However, the melting/solidification kinetics away 
from the equilibrium melting temperature differs greatly from the kinetics in the vicinity of Tm 
due to strong temperature dependence of the thermodynamic driving forces and atomic 
mobility. 

Using an equilibrium theory of thermodynamic potentials to describe the phase transitions 
(non-equilibrium processes) allows to consider only a shallow entry into the metastable 
overheated/undercooled area and explore phase transformations near the equilibrium line. 
This identifies the main disadvantages of the thermodynamic approach. Since 
thermodynamics does not consider the internal structure of the bodies considered, that the 
number of its conclusions and the provisions are not sufficiently precise and physical clarity. 
Structural particles of matter are in constant motion are displayed in the main provisions of 
the molecular-kinetic theory, in which all processes are considered at the atomic or molecular 
level, and the particles have a Maxwellian velocity distribution. 

2.2 Kinetic approach 

Kinetic approach is based on the phenomenological theory of Wilson - Frenkel [30, 31] 
and some of its generalizations [26,32,33]. One of the directions based on the mechanism of 
diffusion limitations melting-solidification front speed using the assumption of the need to 
overcome by the atoms (molecules) diffusion barrier at the transition from liquid to solid 
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phase [30, 31]. The second one uses as limiting the frequency of thermal collisions of atoms 
with the interphase boundary [34, 35]. In the model of diffusion limiting the diffusion 
coefficient of the atoms in the liquid are usually in the form of the Arrhenius equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

lsBTk
QDD exp0       (15) 

where Q - the activation energy for diffusion of motion in the fluid, kB - Boltzmann constant, 
kBT - the average thermal energy for one atom, D0 - pre-exponential factor (prefactor) on 
which the speed of the process depends. 

The speed of crystallization/melting front with diffusion restriction expressed by the 
equation of the type [26] 
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where 02

2
WF faC

λ
= , a – interatomic distance, λ – the mean free path of the atoms in this 

process, it is assumed [36] that it is proportional to the lattice parameter, a: λ<a, f0 – 
efficiency ratio (constant of order unity f0<1), describing the part of collisions of atoms of the 
liquid with solid, leading to crystallization. 

Equation (16) was used to study the kinetics of melting-crystallization of silicon in 
relatively small vicinity of the temperature Tm [37, 38]. The results were compared with the 
results of molecular-dynamic simulation with the Stillinger-Weber interaction potential [39] 
and the experimental data. The comparison showed an acceptable match. However, for pure 
metals, molecular dynamics simulation of crystallization kinetics [34] with the Lennard-
Johnson potential [40] showed that at high degrees of undercooling, where the diffusion 
coefficient D is very small, growth rate of a new phase in one atomic metals was much higher 
then motion speed of interface determined from the equation (16). 

This defect was eliminated by modification of Wilson-Frenkel theory [34] by means of 
introducing as a factor limiting the rate of solidification, the collision frequency of the atoms 
of the liquid phase with the planes of the crystal [35], instead of its diffusion. The result was a 
so-called BGJ (Broughton, Gilmer, Jackson) model, in which diffusion term (15) has been 
replaced by the average thermal velocity of the atoms mTk sBT /3 l=υ  
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where 0
BGJ faC

λ
=  – dimensionless coefficient, m – atomic mass. 

The resulting relation (17) was used to study the kinetics of melting-crystallization of 
sodium [41, 42] in the vicinity of the temperature Tm. The results were compared with the 
results of molecular-dynamic simulation with Lennard-Johnson potential and experimental 
data. With an appropriate choice of fitting coefficients were obtained quite satisfactory 
agreement between the results. 
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Within the framework of the kinetic approach easy to formulate an analytical view of the 
kinetic coefficient µ. For temperatures in the vicinity of equilibrium melting temperature 
Tsl≈Tm from equations (16) and (17) can obtain [25,27] coefficient µ in form: 

T
Tk

L
a
DС

mB

m Δ= 2
WFμ       (18) 

T
Tk

L
m
Tk

С
mB

mmB Δ= 2
BGJ 3

μ       (19) 

It is not difficult to notice that the equations (18) and (19) represent the first term in the 
decomposition of (16), (17) in the vicinity of Tm. Equations (18) and (19) have been widely 
used in studies mostly of solidification kinetics: dendritic solidification [43], solidification in 
area of glass-transition of metals  [44] and silicon solidification [45]. 

The above approaches to the determination of melting and crystallization kinetics have two 
major drawbacks: 
a) all the equations (16) - (19) includes coefficients CWF, CBGJ containing quantities λ and f0 

for which there is no strict definition. Their presence is taken into account in the form 
fitting parameters, methods of selection of which are unknown at entering deep into the 
metastable region of overheated and undercooled states; 

b) a narrow temperature range (vicinity of the equilibrium temperature Tm) of overheated 
and undercooled states in which guarantee the adequacy of the results; 

2.3 Molecular - dynamic approach 
Currently, most of the information about the melting/crystallization kinetics obtained from 

the results of molecular dynamics simulation (MDM) [25-27, 34, 37,38, 41,42 - 52]. 
Statement of computational experiments (CE) is used to determine the basic equilibrium and 
nonequilibrium thermodynamic and kinetic properties of the interfase solid - liquid. The 
simulation results contain information about excess free energy, kinetics of atom attaching to 
the interface (kinetic coefficient µ or kinetic speed ( )lsTυ ) and other parameters that 
characterize the deviation from the chemical equilibrium at the interface between the solid-
liquid interface. 

Representation of physical processes on the atomistic level and then the MD simulation 
allows to looking newly at properties of interfaces crystal-melt relating to the melting and 
crystallization of strongly overheated/undercooled microstructures. The possibility of 
observing using MDM formation of metastable phases and the study of the kinetics of fast 
phase transitions represents new interesting possibilities, including in the field of 
mathematical description of the processes of heterogeneous melting/crystallization of in the 
continuum approximation [10, 21]. 

Statement of CE, atomistic model. 
Determination of stationary temperature dependence of the melting/crystallization rate in 

the range of limit values of overheating/undercooling was carried out by means of 
computational experiment, consisting of a large series of calculations. In simulation have been 
involved atomistic simulation models for two types of metals: with the fcc lattice - 
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Aluminium (Al), copper (Cu) and with bcc lattice - iron (Fe). The basis of atomistic models ia 
a model presentation of polyatomic molecular system in which all the atoms are represented 
as material points, the movement of which is described in the classical case by Newton's 
equations. Thus, there are N points particles, each of which 

- has a mass, radius vector and velocity, respectively, iii rm υ
rr,, , where Ni K1= ; 

- interacts with other by means of forces 
i

N
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To integrate the system of equations (1) we need to know the coordinates and velocities 

0
),(

=tiir υ
rr  at the initial time t=0 of all the N particles. The computational domain was set as 

parallelepiped 5x5x4 nm in size and filled with 57600 particles (Figure 1). Parallelepiped 
represented as a set of 100x12x12 elementary cells of the lattice. In all three spatial directions 
on boundaries of computational domain were set periodic boundary conditions. MD 
calculations were carried out using various  multiparticle EAM potentials: for aluminium [53], 
for copper [54, 55] and for iron [56] with the parametrization [57]. 

Thus, the mathematical model consists of a system of differential equations, their 
difference analogue (difference scheme), the interatomic interaction potential and specifically 
determined initial and boundary conditions. 

Simulation. 

For both types of metals temperature dependences of stationary kinetic 
melting/crystallization rate were determined in the crystallographic (100) plane in the range of 
limit values of overheating/undercooling. Initially, in computational domain the particles form 
a layered structure containing two phases in contact: crystal and liquid separated by a flat 
interface. Further interface speed was measured directly depending on its temperature. At the 
initial stage for investigation of the melting process, the liquid phase takes approximately 
18% of computational domain; for investigation of the crystallization process ~ 80%. Figure 1 
shows the initial state of the computational domain for modeling heterogeneous metal melting 
process. The liquid layer in the middle part of the computational domain is highlighted with a 
dark color. 

During the calculations by menas of thermostat in the entire computational domain was 
established and maintained a fixed temperature during the whole numerical experiment. 
Simultaneously by barostat was maintained constant external pressure. It should be noted that 
was used thermostat which sought to keep the desired temperature at each point of the 
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computational domain, including the melting-crystallization fronts, not the average 
temperature in the entire volume. In [47] was called attention to the importance of such use of 
the thermostat. Thus, reverse effect on the local temperature of the process of 
emission/absorption of the latent heat of melting at the fronts was excluded. As a result, the 
process of heterogeneous melting/crystallization rapidly reaches a stationary state, and 
changing the amount of the new phase is almost linearly, Figure 2. 

 
Figure1. Computational domain of 5x5x41 nm (57600 particles). 
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Figure 2. The positions of the melting front of Al and the thickness of the layer of the liquid phase via time in the 

numerical experiment with a temperature of 1025K and zero pressure. 

Position tracking of melting-crystallization fronts was carried out by means of the order 
parameter. Figure 2 shows the result of simulation of growth of thickness of Al liquid phase at 
a temperature of 1025K and zero pressure. Red and blue solid lines represent changes over 
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time of coordinate of left and right boundaries of the liquid phase, the blue dotted line - the 
thickness of the liquid phase, the solid black - approximation of a linear function. It is noted 
that only the middle section of the liquid thickness line was approximated because the initial 
and final sections contain errors associated with the process of establishing a stationarity of 
mode, as well as with surface effects, when the amount of the crystalline phase becomes too 
small. 

The range of maximum permissible values of overheating/undercooling  
The maximum permissible values of overheating/undercooling were determined relative to 

the equilibrium melting point Tm at zero pressure. 
The maximum overheating of the solid phase in the calculation was fixed by loss of the 

mechanical stability of the crystal associated with the violation of the heterogeneity of the 
melting process. For stationary conditions of influence the value of the limit overheating at 

ms TT 2.1≈l  which is in good agreement with the results of [58]. At unstationary influence the 
limit value of overheating reached value of 1.5Tm and more, that coincides with the estimates 
[59].  

Limiting the deep entering to undercooling area is due to the formation of the intermediate 
(interstitial) phase for which the parameter of order is significantly greater than that of the 
liquid, but much smaller than the normal crystal. The appearance of the interstitial phase 
indicates the beginning of the glass transition process. The glass transition temperature of 
most metals is in the region ( ) mg TT 5.03.0 ÷≈  [44]. Therefore, in the calculation the 
temperature of maximum undercooling of pure liquid was limited by temperature of 
beginning of liquid metal glass-transition and was assumed to be ( ) ms TT 6.04.0~ ÷l . At the 
same time crystallization front velocity slows down and is lower than in pure liquid 
crystallization. Thus, temperature range of maximum overheating/undercooling equal to 

( ) ms TT 2.14.0 ÷≈l . 

Results 
Investigation of the kinetics of melting - crystallization was carried out with statement of a 

series of computational experiments at undercooling of liquid phase and overheating of solid 
relatively to the equilibrium melting point Tm in the temperature range: ( ) mT2.14.0 ÷ . For each 
of the selected metals was carried out two series of numerical experiments: for two external 
pressure values - 0 and 80 kbar. 

The results of carried out molecular dynamics simulation was obtention a discrete 
ensemble of values of the phase front velocity )( lsTυ  shown in Fig. 3,4,5 by markers, in a 
range maximum overheating and undercooling values for Al, Cu and Fe (in Fig. 3,4,5 circles 
and triangles). 

3. CONSTRUCTION OF ANALYTICAL DEPENDENCIES )( lsTυ  

Obtained from molecular dynamics simulation discrete ensemble of values slυ , as well as 
the shape of the temperature dependence of the kinetic velocity (BGJ model [34], equation 
(17)) was used to construct an analytical dependences )( lsTυ  for all of metals under 
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consideration Al, Cu, Fe. For this purpose, using the expression (17) as an approximation 
function, a discrete ensemble )( lsTυ  was approaching by the equation  

⎥
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l
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s
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s T

TT
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LT
m
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where α , β  approximation parameters and BGJС=α . Thus, not very precisely defined in 
BGJ model coefficients BGJС  are found automatically from MD calculations. The introduction 
of additional parameters α  before the whole expression and β  into exponent achieved the 
required accuracy of the temperature dependence )( lsTυ  over a wide temperature range. 

Approximation of discrete ensemble was carried out taking into account the fact that in the 
equation (21) contains two thermophysical parameters - the value of the equilibrium melting 
point Tm and latent heat of melting Lm, which are due to the imperfection of used interaction 
potentials can in molecular dynamics calculations deviate slightly from reality. For the purity 
of the comparison of the two curves that approximated and calculated in equation (21) were 
used values Tm and Lm determined from the MDM. For their determination were used 
methodologies from [22-24]. MD calculations were performed with the same potentials [54-
57]. The calculation results are shown in Table 1. 

 

 

 

 

 

 

 

Table 1. The calculation results. 

The best agreement with the error not exceeding a few percent across the entire 
temperature range were achieved at values of approximating coefficients α and β presented in 
Table 2: 

Pressure Al Cu Fe 
α β α β α β 

P = 0 0.344 5.01 0.416 5.74 0.365 6.34 
P = 80 кбар 0.374 5.37 0.441 5.51 0.416 6.31 

Table 2. Values of approximating coefficients α and β. 

In the figures 3,4,5 solid red and blue dotted lines indicate simulation results of the  
approximation using the formula (21). The curves obtained for all metals have great 
generality. Melting branches with increasing overheating in area msm TTT 2.1≤≤ l  are 
increasing in exponential, reaching the maximum values smTs /350300~)( ÷lυ . The 

Metal Pressure,  
[kbar] mT , [K] mL , [kJ/mole] 

Al 
0 949 8.90 
80 1332 11.30 

Cu 
0 1315 11.48 
80 1602 13.21 

Fe 
0 1775 15.57 
80 2062 17.14 
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crystallization process in the undercooling area msm TTT ≤< l5.0  occurs in more complicated 
manner. The velocity of crystallization )( lsTυ  at all curves, Fig. 3-5, in the vicinity of 

ms TТ 7.0~l  has an easy-to-see maximum, in which reaches a value ~140-160 m/s. It is noted 
the good coincidence of maximum crystallization rate for Fe with a similar data obtained in 
[44]. The appearance of a maximum in the crystallization rate is due to the beginning of the 
formation of interstitial (interstitium) phase, that slowing the velocity of the phase front. In 
this paper, we consider only crystallization processes in undercooled pure liquid. The process 
of glass-transition, flowing at undercooling gs TT ≤< l0 , excluded from consideration, since 
the complexity and importance of this process, in particular for the technological applications 
merit separate consideration. 
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Figure 3. The dependence of the melting/crystallization front velocity via the magnitude of 

overheating/undercooling for aluminum. 
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Figure 4. The dependence of the melting/crystallization front velocity via the magnitude of 

overheating/undercooling for copper. 
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Figure 5. The dependence of the melting/crystallization front velocity via the magnitude of 

overheating/undercooling for iron 

External pressure (p = 80 bar) has no significant influence with the behavior of kinetic 
velocity throughout overheating/undercooling range under the consideration - blue curves. 
But the maximum value of the melting and crystallization rate however increasing to 350-450 
m/s and 160-180 m/s, respectively. 

4 KINETIC VERSION OF STEFAN PROBLEM 
In a rather general statement, but without taking into account hydrodynamic processes, 

Stefan problem can be reduced to a boundary value problem for a quasilinear parabolic 
equation with piecewise continuous coefficients having discontinuities of the first kind on a 
priori unknown moving surfaces. In the case of laser action on metals the processes of 
heterogeneous melting/crystallization, are usually considered together with the processes of 
the surface (heterogeneous) evaporation and volumetric or surface absorption of laser 
radiation. The mathematical description of these processes realized by a system of nonlinear 
equations of heat conduction and transfer of laser radiation with moving interphase 
boundaries ( )tx slΓ=  and ( )tx υlΓ=  at which are formulated ratios describing the 
mechanisms of heterogeneous melting/crystallization and evaporation: 
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( ) ( )txtxx ss υlll U Γ<<ΓΓ<<0 ,  ∞<<∞− t .    

For a description of phase transitions melting - crystallization at the interface ( )tx slΓ=  
uses differential Stefan condition (1) and the expression for the kinetic velocity (21): 
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The system of equations (22) - (25) is an kinetic version of Stefan problem. The principal 
difference from the classic version is that the movement of the interface, whose velocity is 
determined from the expression (25), it is possible only if its overheating or undercooling, i.e. 
when 0≠−=Δ ms TTT l . The differential equation (24), in contrast to the classical version of 
Stefan problem is used to determine the temperature of the interface lsT , which coincides with 
a temperature mT  only in case of phase equilibrium. 

In the kinetic version are removed all the contradictions associated with the use of  
condition of temperature equality (2). At the same time numerical implementation of kinetic 
version of Stefan problem imposes strict limitations on the choice of the solution algorithm, 
consisting in the requirement of explicit separation of the phase boundary ( )tx slΓ= , that 
making it impossible to use the enthalpy approach [60 - 62] widely used in the solution of the 
classical Stefan problem. 

Heterogeneous evaporation of metals are usually described in the approximation of one-
phase Stefan problem, supplemented by the ratios on nonequilibrium Knudsen layer [63 - 67]. 
For this purpose, on evaporating surface ( )tx kυΓ=  are written 3 conservation laws 

( ) l,, skk tx =Γ= υ : ( ),ukkк −υ= υυυ ρυρ ( ) ,22 up kkкk −υ=+ υυυ ρυρ  ( ) υυρλ kk
k

k L
x

TT υ=
∂
∂  (26) 

where кρ , kp , kT  - density, pressure and temperature of condensed phase, υkυ  - evaporation 
front velocity. 

υυυρ Tp ,, , - are the vapor density, pressure and temperature, on the outer side of the 
Knudsen layer. Their values are determined from Krut model [63,67],  

kTMT )(Τ=αυ , satM ραρ ρυ )(= ,  )()()( ksatT TPMMP ρυ αα= ,  (27) 
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Τα , ρα  are the Crout coefficients, satsat P,ρ  are the density and pressure of the saturated 
vapor, bP , bT , are the equilibrium boiling pressure and temperature, u , su  - gasdynamic the 
vapor flow velocity and the speed of sound, M  is the Mach number at the outer side of the 
Knudsen layer, which characterizes the degree of kinetic nonequilibrium of phase transition. 
The maximum nonequilibrium of evaporation process corresponds to the value 1=M : at 
which =υT  0.633 lT , υρ = 0.328 satρ .  

For the transport equation of the laser radiation on evaporating surface was written 

72



V.I. Mazhukin, A.V. Shapranov, A.V. Mazhukin, O.N. Koroleva 

condition 

( ) ( )tGTAG kk = ,      (28) 

where ( )kTA  - absorptivity of the surface. 
The mathematical model (22) - (28) is a combined version of Stefan problem with two 

moving phase boundaries. 
Due to strong nonlinearity these problems require a numerical solution, which can be 

carried out using a specially developed method of dynamic adaptation [68-70]. The method 
allows to perform the numerical solution of non-stationary boundary value problems of 1D 
[71] and 2D [72,73] with an arbitrary number of moving interfaces [74-77], discontinuous 
solutions such as shock waves contact boundaries [78-80]. 

In the case of fast phase transitions typical for pulse influence of concentrated flows of 
energy [17] the characteristic velocity of propagation of the phase fronts of which are in the 
range ( ) sounds usm ≤υ≤10÷10 3

l/  for a correct description of phase transformations is 
necessary to use a complete set of continuum equations for mass, momentum and energy 
flow. 

5 CONCLUSIONS 
Was considered and analyzed the possibility of different approaches: thermodynamic, 

kinetic and molecular dynamics to investigation of kinetic properties of moving interfaces in 
metals with different crystallographic lattices: Al, Cu (fcc) and Fe (bcc) in a wide range of 
overheating/undercooling. 

On the basis of extensive molecular dynamics simulations the values of the kinetic velocity 
)( lsTυ  of interfaces movement for all metals in the range of ( ) msm TTT 2.16.04.0 ≤<÷ l . 

By approximating the simulation results by expression for the kinetic velocity near 
equilibrium were built analytical expressions for speed )( lsTυ , containing two approximating 
coefficients for all metals in whole considered range of overheating of solid phase and 
undercooling of the liquid. Approximation error does not exceed a few percent. 

Obtained analytical expressions for the velocity )( lsTυ  were used for the formulation of a 
kinetic version of Stefan problemin which was eliminated the main contradiction of the 
classical Stefan problem associated with use of equality equilibrium melting temperature mT  
to the interface temperature lsT . 

Was formulated a mathematical model describing the dynamics of phase transitions 
(melting/crystallization, evaporation) in the case of laser action on metals. 

The work was supported by the RFBR grants №№16-07-00263, 15-07-05025. 
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