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Abstract—Various mechanisms causing band gap narrowing in strongly heated silicon are consid-
ered. In the high-temperature region, it becomes necessary to use Fermi–Dirac quantum statistics
to describe carriers, since the silicon chemical potential appears in the valence band and in the
conduction band at high carrier concentrations. It is shown that carrier degeneracy under conditions
of sufficiently strong heating of intrinsic semiconductor causes strong band gap narrowing. The
obtained values of band gap narrowing are compared to experimental results.
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Pulsed laser exposure of silicon is a region of active fundamental [1] and applied [2] studies for
many years. In this context, much attention is paid to the problem of determining the properties of this
semiconductor and its plasma in a wide range of parameter variations, i.e., the temperature, pressure, and
the intensity, duration and wavelength of the laser radiation. For example, the exposure to nanosecond
and picosecond laser pulses in due time caused an acute discussion about melting mechanisms [3]
and properties of high-density electron-hole plasma [4]. These studies are urgent at the present time
as well. Extensive experimental and theoretical data allowed the conclusion [5] that silicon relates to
semiconductors in which covalent bonds are broken during melting with a change in the short-range
order and a sharp increase in the conduction electron density, resulting in the silicon transition to the
metal state. However, the role and effect of one of the most important silicon characteristics, i.e., the
band gap Eg in the high-temperature region remained unrevealed both experimentally and theoretically.

The capability of optical experiments [4] and experiments based on photoluminescence spectroscopy
[6] is very limited in the melting region. The theoretical approaches in the high-temperature region
T ≈ Tm, where Tm is the equilibrium melting temperature, and above face the circumstance that the
carrier concentrations Ne, Nh in this temperature region reach Ne ≈ 1018 cm−3 and above. To describe
the carrier states at such densities, it becomes necessary to use quantum statistics, i.e., the Fermi–Dirac
(F–D) distribution function and integrals.

The objective of this work is to study the behavior of the fundamental silicon characteristic, i.e., the
band gaps and its variation under conditions of thermodynamic equilibrium with increasing temperature
and carrier concentration. Special attention is paid to the determination of the most important semicon-
ductor characteristic, i.e., the equilibrium carrier concentration in the melting region.

In the simplest cases, i.e., for intrinsic semiconductors (Ne = Nh) under conditions of thermody-
namic equilibrium in the low-temperature region T ≈ 300 K, the determination of the temperature
dependences of electron Ne(T ) and hole Nh(T ) densities is not a serious problem, since carriers are
non-degenerate and obey the Maxwell–Boltzmann (M–B) statistics [7],
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where me,mh are the effective mass tensors for the conduction band and the valence band, kB is the
Boltzmann constant, � is the Planck constant, M is the number of valleys in the conduction band, for
silicon, M = 6.

The semiconductor is non-degenerate until the conditions

EC − μ � kBT, μ − EV � kBT (2)

are satisfied for it, where μ is the chemical potential (Fermi level), EC is the lower boundary of the
conduction band, and EV is the top of the valence band.

The determination of intrinsic concentrations in silicon is significantly complicated in the high-
temperature region T ≤ Tm. The quantities Eg, μ and Ne(T ) become interdependent. Due to the high
carrier concentrations, the chemical potential approaches the top of the valence band. Non-degeneracy
conditions (2) are not satisfied, M–B statistics becomes invalid, and expression becomes inapplicable.
In this case, the electron and hole states should be described using F–D quantum statistics; the
concentrations should be determined using F–D integrals of the order of k = 1/2: F1/2(ηe) and
F1/2(ηh),

Ne(T ) = NCF1/2(ηe), NC = 2M(mekBT/2π�
2)3/2,

F1/2(ηe) = 1/Γ(3/2)

∞∫
0

ε1/2/1 + exp(ε − ηe)dε,

Nh(T ) = NV F1/2(ηh), NV = 2M(mhkBT/2π�
2)3/2, (3)

F1/2(ηh) = 1/Γ(3/2)

∞∫
0

ε1/2/1 + exp(ε − ηh)dε,

where ηe = −(EC − μ)/kBT, ηh = −(μ−EV )/kBT is the reduced chemical potential, NC , NV are the
electron and hole densities of states, respectively.

To calculate the F–D integrals of integer and half-integer orders, the convenient approximation was
proposed in [8, 9], according to which the integrals of order k = 1/2 are presented in the form

F1/2(ηe) = exp
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)
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The electrical neutrality condition with regard to the approximation (4) takes the form

Ne(T ) − Nh(T ) = NC exp
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− NV exp
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i
h

)
= 0. (5)

In this case, the band gap intricately depends on the lattice temperature T and carrier concentration
Ne [10] and exhibits significant narrowing due to the convergence of the boundaries of the bottom of
the conduction band with the top of the valence band. Three main mechanisms cause the band gap
narrowing effect: lattice thermal expansion, electron-lattice interaction, and collective interactions of
carriers. The thermal expansion with increasing temperature, along with the electron-lattice interaction
enhancement, causes a displacement of relative position of the conduction and valence bands. In the
low-temperature region T ≤ 300 K, the thermal effect is nonlinear in contrast to higher temperatures
where the temperature dependence of the band gap variation is linear. The total manifestation of the first
two band gap narrowing mechanisms is described by the semi-empirical dependence [11]

Eg(T,Ne) = Eg,0 − αT 2/(T + β), (6)

where Eg,0 = 1.169 eV is the band gap at a temperature of 0 K, α and β are the constants whose
experimental estimates for silicon are α = 7.021 · 10−4 eV/T and β = 1108 K.
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Fig. 1. Temperature dependences (1) μ(T ); EC(T ) and EV (T ) with parameters: (2), (3) γ = 8.35 · 10−8 eV·cm; (4),
(5) γ = 4.2 · 10−8 eV·cm.

Fig. 2. Temperature dependences Ne(T ). Statistics: F–D (1) γ = 8.35 · 10−8 eV·cm, (2) γ = 4.2 · 10−8 eV·cm; M–B
(3) taking into account the temperature dependence of Eg, (4) Eg = const = 1.12 eV.

The third band gap narrowing mechanism is associated with the effects of the collective interactions
of carriers, which become dominating at sufficiently high concentrations. The quantum effects become
appreciable at carrier concentrations Ne ≈ 1018 cm−3 and is formulated in a complex way [12]. The most
significant contribution to the band gap narrowing is made by the exchange interaction estimated by the
empirical dependence of the form ΔEg(Ne) ∼ γ · N1/3(T ) [13], where γ is the fitting parameter used
to bring into coincidence the theoretical estimates with experimentally determined values of band gap
narrowing in various semiconductors.

The Si band gap narrowing can be estimated taking into account all mechanisms at high tempera-
tures and carrier concentrations N ≈ 1018–1021 cm−3 within the semi-empirical dependence [11]

Eg(T,N) = Eg,0 − αT 2/(T + β) − γN1/3(T ). (7)

The fitting parameter γ for wide band-gap semiconductors 1.1 < Eg < 3.5 eV at temperature T ≈
300 K and concentration N = 1017 − 1019 cm−3 is in the range of (2.69 − 7.3) · 10−8 eV·cm [13, 14].
For silicon, under the same conditions, the parameter γ is in the range of (1.0 − 3.6) · 10−8 eV·cm [12,
15]. In this study, the fitting parameter γ for Si was taken as parameter γ = 8.35 · 10−8 eV·cm for the
reasons of the band gap zeroing at T = Tm = 1687 K.

The calculated results are shown in Figs. 1–2. Figure 1 shows the temperature dependences of the
silicon chemical potential μ(T ) and the conduction EC(T ) and valence EV (T ) band edges, which give
pictorial presentations of the band gap shape and narrowing rate Eg(T,N). The chemical potential
calculated from Eq. (5) progressively deviates from the midgap toward the valence band EV (T ) with
increasing temperature. The convergence of curves μ(T ) and EV (T ) is defined by the ratio of the electron
and hole effective masses, which is Mme/mh = 1.89 for silicon. Beginning with T = 1000 K, the carrier
concentration (Fig. 2) and the band gap (Fig. 1) calculated with quantum and classical statistics begin
to differ: for F–D, Nh(T ) = 1.5 · 1018 cm−3, Eg(T,Nh) = 0.73 eV; for M–B, Nh(T ) = 9.1 · 1017 cm−3,
Eg(T ) = 0.81 eV. The data obtained correspond to weak degeneracy (ηh ≈ −4).

The strong degeneracy region arises in the case of crossing μ(T ) and EV (T ) which corresponds
to ηh = 0 and T = 1600 K, Nh = 1.1 · 1020 cm−3, Eg(T,Nh) = 0.083 eV for the F–D distribution and
Ni = 3.8 · 1019 cm−3, Eg(T ) = 0.48 eV for the M–B distribution.

The same pattern with a certain shift to higher temperatures is observed with electron gas degen-
eracy. Weak degeneracy: ηe ≈ −4, T = 1090 K, Ne(T ) = 4.5 · 1018 cm−3, Eg(T,Ne) = 0.61 eV; strong
degeneracy: ηe ≈ 0, T = 1920 K, Eg(T,Ne) = −0.28 eV. For the equilibrium melting temperature T =
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Tm = 1687 K in the version with quantum statistics and the fitting parameter γ = 8.35 · 10−8 eV·cm,
the band gap vanishes Eg(T,Nh) = 0 with the carrier concentration Nh(T ) = 1.7 · 1020 cm−3. Upon
further heating to T = 2000 K, the band gap becomes negative, and the carrier concentration continues
to increase, Nh(T ) = 4.2 · 1020 cm−3, Eg(T,Nh) = −0.38 eV.

For the M–B distribution, the band gap still remains positive, and the concentration is significantly
lower than that for the F–D statistics: Eg(T ) = 0.24 eV, Ni = 1.4 · 1020 cm−3. As the fitting parameter
twofold decreases, γ = 4.2 · 10−8 eV·cm, the band gap vanishes Eg(T,Nh) = 0, T = 2000 K and
Nh(T ) = 2.05 · 1020 cm−3. The analysis performed allowed the following conclusions:

(i) Under conditions of thermodynamic equilibrium, carrier degeneracy in silicon with intrinsic
conductivity begins at a temperature significantly below the equilibrium melting temperature. This
requires the use of quantum statistics and technique of calculating the F–D integrals when determining
properties of solid-state silicon.

(ii) The concentrations of both carrier types indicate their strong degeneracy in the temperature
range T = 1600 − 2500 K. The consideration of quantum effects makes it possible to zero the band
gap Eg(T,Nh) = 0 at the equilibrium melting point or its vicinity. The concentrations are in the range
N(T ) = 4.2 · 1020 − 1021 cm−3 which is typical of semimetals with negative band gap [7], but is below
the concentrations typical of metals by several orders of magnitude, 1022 · 1023 cm−3.

(iii) Thermodynamic equilibrium melting of undoped crystalline silicon occurs in two stages. First,
the melt gains semimetal properties with the number of carriers increasing with temperature. Then, upon
reaching a certain temperature T � Tm, molten silicon takes metallic properties with constant electron
and hole concentrations.

(iv) The above analysis is very important to better understand nonequilibrium heating and melting of
pure crystalline silicon, e.g., by ultrashort femtosecond laser pulses [1, 4]. While satisfying the condition
�ωL > Eg(T,N), where �ωL is the laser radiation photon energy, electron and hole concentrations
N(T ) ≈ 1022 cm−3 can be reached in solid silicon due to photoelectric effects without reaching the
melting temperature by the lattice, but, nevertheless, with reaching metallic properties.
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