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Abstract. The paper discusses the results of mathematical modeling of characteristics of 
electron gas of silicon with intrinsic conductivity. The properties of electronic subsystem are 
determined within the framework of the continuum approach using the quantum statistics of 
electron gas and Fermi-Dirac integrals in an arbitrary degeneracy range of the electron gas 
with a temperature change from 300K to 2000K. When modeling the properties of the 
electronic subsystem, the effect of narrowing the band gap under the conditions of sufficiently 
strong heating of the intrinsic semiconductor and carrier degeneracy is taken into account. 
The properties of electron gas, such as carrier concentrations in the conduction and valence 
bands, mobility of carriers, electrical conductivity, and the coefficient of ambipolar diffusion 
are determined. Numerical and graphical information on obtained properties and comparison 
results with experimental data are presented. 
 
 

1 INTRODUCTION 
In the past few decades, technological applications related to the laser processing of 

semiconductors with short pulses have been rapidly developing. The wide spectrum of 
technologies associated with this direction includes such as the generation of nanoparticles 
and nanostructures [1, 2], the creation of metamaterials [3], modification of the surface of 
semiconductors by laser pulses [4]. The development of technologies related to laser action on 
semiconductors, activates research on the fundamental mechanisms underlying such processes 
as ultrafast melting, ablation, which are still the subject of active scientific discussions [5]. In 
this connection, knowledge of the properties of semiconductors, in particular silicon, at 
temperatures close to the melting and evaporation temperature is of decisive importance.  

Traditionally, the properties of semiconductors, like metals, are determined 
experimentally. In the literature, the experimental values of the equilibrium thermophysical 
properties of silicon obtained for different temperature ranges (up to the melting point) are 
reported [6-9]. These data, mainly relating to thermal conductivity and electrical conductivity, 
differ markedly from each other. There are also methods for measuring the equilibrium 
thermophysical properties of semiconductors in a molten state [9]. The data obtained by 
measurements, in the course of experiments, are widely used for testing theoretical 
dependencies. Despite this, the experimental approach has a number of limitations, primarily 
on a range of measurement conditions, especially in the field of melting. 

In the problems of laser action on semiconductors the knowledge of equilibrium properties 
is insufficient. Laser heating of semiconductors (silicon) as well as of metals is 
nonequilibrium and proceeds with a large separation of the temperatures of current carriers 
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from the lattice; therefore, in  problemsof  laser action on silicon it can be considered as an 
object consisting of two interacting subsystems, electronic and phonon. At the same time, for 
each of the subsystems it is necessary to determine thermophysical, optical and 
thermodynamic characteristics that vary over a wide temperature range. In view of limited 
possibilities of the experimental approach in determining the properties of the electron gas of 
silicon,  in this paper we propose to use the theoretical approach and the possibilities of 
mathematical modeling. For theoretical determination of the properties of electronic 
subsystem, the present paper uses the quantum statistics of electron gas, i.e. distribution 
functions and Fermi-Dirac integrals [10, 11]. Numerous experiments [5-8] have shown that in 
the process of melting in silicon covalent bonds are destroyed, with a change in the short-
range order accompanied by a sharp increase in the concentration of conduction electrons and 
leading to the transition of silicon to the metallic state. The behavior of the electronic 
subsystem of silicon under phase transition conditions is decisive for laser impact problems. 
The most important characteristic of the phase transition, along with the temperature 
dependence of the carrier concentration, is the fundamental characteristic of silicon - band 
gap. Under the conditions of temperature increase, the band gap Eg(T) narrows, having a 
significant effect on the increase in the carrier concentration reaching high values of 
N(T)≈1018 cm-3 and higher, which is confirmed by experimental studies [13,14].  

The article presents numerical and graphical information about some characteristics of the 
electronic subsystem of silicon with intrinsic conductivity, determined by means of 
mathematical modeling. Such electron gas properties as electron concentration Ne(T), holes 
concentration Nh(t), Fermi energy EF(T,N), band gap Eg(T,N), carrier mobility μ(T,N), 
electrical conductivity σ(T,N), ambipolar diffusion coefficient Da(T,N) are determined within 
the framework of quantum statistics in an arbitrary range of electron gas degeneracy with a 
temperature change from 300K to 2000K. The results are compared with the experimental 
data.  

2 CALCULATION OF PROPERTIES OF ELECTRONIC SUBSYSTEM OF 
SILICON 

The calculation of the properties of electronic subsystem of silicon is based on the use of 
statistics of electron gas of semiconductors. Central to this approach is the charge carrier 
distribution function for energy states. Electrons in the conduction band and holes in the 
valence band of silicon can be considered as an ideal Fermi gas. For an ideal Fermi gas, the 
probability of an electron filling a state k with energy E at a temperature T is found using the 
Fermi-Dirac distribution [10-12]: 

1(E,T)
1 exp F

B

f
E E

k T

=
⎛ ⎞⎛ ⎞−
+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

    (1) 

where EF is the Fermi energy, determined from the electroneutrality condition, kB is the 
Boltzmann constant.  

For electron gas, the value of Fermi energy coincides with the value of chemical potential 
at T = 0 K and is defined as the amount of energy needed to change the number of particles in 
the system per unit volume.  
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An important characteristic of semiconductors, which is necessary for determining the 
majority of the thermophysical properties of silicon, is the concentration of charge carriers. In 
intrinsic semiconductors, unlike metals, the number of charge carriers and their mobility 
depend on temperature.  

The electron Ne(T) and holes Nh(T) concentrations at the temperature T in conduction band 
under thermodynamic equilibrium conditions are determined  

( ) (E)
C

e C
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N T N f dE
∞

= ∫   ( ) (E)
VE

h VN T N f dE
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where EC is energy of the bottom of conduction band, EV - energy of the top of valence band,
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– effective densities of states in conduction band and 

valence band, ћ is the Planck constant, ( )1 32 3 2
e l tm M m m= ⋅

 
– effective mass of the density of 

states of electrons in conduction band, taking into account the number of equivalent energy 
minima in conduction band M (for silicon M=6) [10-12], ml, mt – the longitudinal and cross-
section masses, mh is the effective mass of hole density of states in the valence band, and f(E) 
is Fermi-Dirac distribution function (1). For an intrinsic semiconductor that does not contain 
impurities, equality of concentrations holds  

Ne(T)=Nh(T)=N(T).     (3) 

The integrals in (2) can be represented in the form  

( ) ( )1 2e C eN T N η= ⋅F   ( ) ( )h V 1 2 hN T N η= F    (4) 

where F1/2(x) is Fermi-Dirac integral of order j=1/2, a representative of the family of integrals 
that play an important role in determining the properties of semiconductors  
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∞
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where Γ(x) – Gamma function, j is order of Fdermi-Dirac integral, c=e for electrons and c=h 
for holes, ε is reduced electron (hole) energy, reduced Fermi energy for electrons and holes 
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where EC is energy of the bottom of conduction band, EV - energy of the top of valence band.  
At low temperatures in semiconductors, the concentration of conduction electrons is so 

small that they behave like a gas of noninteracting particles, the electron gas is nondegenerate. 
In this case, the Fermi level EF lies below the bottom of conduction band (EC-EF>0) in band 
gap Eg and distribution function (1) easily reduces to the classical Maxwell-Boltzmann 
distribution function and the calculation of carrier concentration (4) reduces to 
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Taking into account the intrinsic conductivity N(T) 
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In the computational context, determination of carrier concentrations will not be difficult. 
As the temperature rises, the situation changes. Hot electrons give energy to the lattice, while 
the band gap decreases and concentration of free charge carriers in the conduction band 
increases. The Fermi level penetrates either to the conduction band (EC-EF<0) or to the 
valence band (EF-EV<0), the electron gas degenerates and the classical statistics become 
unfair, and (7) is not valid. Therefore, it becomes necessary to use quantum statistics and 
expressions (4) for carrier concentrations. This immediately leads to computational 
difficulties, since the integral (5) with the exception of an integral with order j=0 can not be 
calculated analytically. The computational difficulties associated with the use of Fermi-Dirac 
integrals arise not only in determining the carrier concentrations, but also in determining the 
properties of electron gas such as electrical conductivity, carrier mobility, the ambipolar 
diffusion coefficient and others, where were used Fermi-Dirac integrals with integer and half-
integral orders, as a rule, not high 1/ 2 7 / 2j− ≤ ≤  and 1 3j− ≤ ≤ . In [15,16] for Fermi-Dirac 
integrals of orders j=-1/2, 1/2, 1, 3/2, 2, 5/2, 3 and 7/2  continuous analytical expressions have 
been obtained for each single order in a wide range of degeneracy  
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Which in this paper were used to calculate the properties of an electron gas. To calculate 
integrals with order j=1/2, for example, an approximating function with m = 7 is used (9). 

As the temperature in the semiconductor increases, process of thermal excitation of 
electrons from valence band to conduction band proceeds continuously, electrons recombine 
from the conduction band to the valence band. In the intrinsic semiconductor these processes 
are balanced, and electron and hole concentrations are the same. From the electroneutrality 
condition, we can find the temperature dependence of Fermi energy EF, using (4) and (9) for 
j=1/2, we obtain  

7 7
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i i

N exp a N exp aη η
= =

⎛ ⎞ ⎛ ⎞
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∑ ∑     (10) 

The band gap of silicon Eg, like other semiconductors, with increasing temperature and 
increasing concentration of charge carriers, tends to narrow [10-14].  

The effect of narrowing the band gap is due to three main mechanisms: thermal expansion 
of the lattice, electron-lattice interaction and collective interactions of carriers. Thermal 
expansion with increasing temperature together with the enhancement of the electron-lattice 
interaction causes a shift in the relative positions of the conduction and valence bands. The 
total manifestation of the first two mechanisms of narrowing of the band gap is described by a 
semiempirical relationship [17] 

( ) ( )2
,0,g gE T N E T Tα β= − + ,    (11) 
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where Eg,0 = 1.169 eV is band gap at temperature 0°K, α and β are constants, whose 
experimental estimates for silicon: α = 7.021×10-4 eV/T, β = 1108K. 

The third mechanism of narrowing of the band gap is associated with the effects of 
collective interactions of carriers, which become dominant at sufficiently high concentrations. 
The  influence of quantum effects becomes  noticeable at a carrier concentration of N≈1018 
cm-3 and is formulated in a complex manner [18]. The most significant contribution to the 
narrowing of the band gap is made by the exchange interaction estimated by the empirical 
dependence of the form ΔEg(N)~γ×N1/3(T) [19], where γ is the fitting parameter used for 
combining theoretical estimates with the experimentally determined values of the narrowing 
of the band gap in various semiconductors. For silicon at a temperature of T≈300K and carrier 
concentration N=1017÷1019 cm-3, the value of the parameter γ is in the range of (1.0÷3.6)10-8 
eV×cm [18, 20]. 

An estimate of narrowing of Si band gap taking into account all mechanisms at high 
temperatures and carrier concentrations N≈1018÷1021 cm-3 can be performed within a 
semiempirical relationship [21, 22] 

( ) ( ) ( )TNTTEN,TE 312
0,gg γβα −+−= ,   (12) 

where the value γ = 8.35×10-8 eV×cm – was chosen from the condition that the band gap 
should be zero at equilibrium melting point Eg(Tm)=0 [22]. Figure 1 shows temperature 
dependences giving a clear picture of the shape and velocity of narrowing of the band gap 
Eg(T,N) and the position of Fermi energy level EF(T) calculated with quantum statistics 
relative to the edges of valence EV(T) and conduction EC(T) bands and intrinsic Fermi level in 
the middle of the band gap. With increasing temperature, Fermi energy EF(T) deviates from 
its own level toward the edge of valence band EV(T), which is determined by lower effective 
mass of density of states of the valence band. For silicon, the ratio of effective masses of 
states of electron and hole is mde/mdh=1.89. Because of this, the degeneracy of hole gas (EV-
EF<kbT, ηh≈-4) occurs earlier than the degeneracy of electron gas at a temperature T=1000K 
which is much lower than equilibrium melting point. 

Figure 1. Temperature dependences of the edges of 
conduction EC(T) and valence EV(T) bands taking into 
account: (1), (2) -thermal and quantum effects; (3), (4) 
- thermal effects. (5) - Fermi energy EF(T).  

Figure 2. The temperature dependence of the band gap 
with regard to: (1) - thermal and quantum effects; (2) - 
thermal effects. The markers show experimental data 
[23]. 
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Figure 2 shows the band gap computed taking into account quantum and thermal (12) and 
only thermal (11) effects. In the temperature range from 300 ° K to θ where influence of 
quantum mechanisms is weak the band gap is equally well approximated by both dependences 
and completely coincide with experiment [23]. Above Debye temperature, the contribution of 
collective interaction mechanisms to band gap becomes appreciable which causes a stronger 
narrowing of band gap by means of the dependence (12) taking these effects into account. 

Figure 3 shows temperature dependences of the carrier concentration calculated with 
quantum statistics and band gap (12) and classical Maxwell-Boltzmann statistics and the 
constant value of band gap Eg=1.12 eV at 300K. 

 
Figure 3. Temperature dependences of carrier concentrations calculated using statistics: (1) - Fermi-Dirac, (2) - 

Maxwell-Boltzmann, Eg = 1.12 eV. 

2.1 Mobility of carriers 
Mobility is an important transport characteristic of a semiconductor. Using quantum 

statistics the mobility of carriers is determined by following expression  
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where ( )0
c Tμ  is mobility of carriers for a nondegenerate semiconductor, F1/2(ηc), F0(ηc) 

(c=e,h) are Fermi-Dirac integrals of orders j=1/2 and j=0.  
In [24] was given method for calculating the mobility of nondegenerate charge carriers 

taking into acoount electron-hole scattering which was used to calculate 0
cμ . In this approach, 

it is assumed that the mobility of electron or hole is a function of the following three 
components: mobility of lattice, mobility of impurity scattering and mobility of electron-hole 
scattering. 

Figure 4 shows temperature dependences of the mobilities of electrons and holes. With 
increasing temperature, the mobility of carriers decreases which is due to the enhancement of 
electron-lattice interaction and effects of collective interactions acting at sufficiently high 
carrier concentrations and degeneracy of electron gas. Figure 4 also provides reference [25] 
and experimental [26, 27] data in temperature range T=300K÷600K.  
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Figure 4. Temperature dependences of mobilities (1) - electrons, (2) - holes, (3) - total calculated with quantum 
statistics, markers: blue - reference data [25], light green -  experimental data [26], dark green markers – 
experimental data [27]. 

In the region of low temperatures T<600K as can be seen from Fig. 4, obtained 
temperature dependences of carrier mobilities show good agreement with reference and 
experimental data. In the high-temperature region T > 600K (near the melting point), 
experimental values of carrier mobility are absent. 

2.2 Ambipolar diffusion coefficient 
As the mobility of carriers the ambipolar diffusion coefficient is important transport 

semiconductor characteristic. When laser action on a semiconductor, in the near-surface layer 
the concentration of free carriers sharply increases which diffuse deep into the sample. As the 
temperature increases, carrier concentration increases reaching at equilibrium melting 
temperature T=Tm=1687K the value of 1.7×1020 cm-3 (Fig. 3), with that diffusion rate 
decreasing due to an increase in frequency of electron-electron and electron-phonon collisions. 
This process is characterized by the ambipolar diffusion coefficient Da(T,N) which depends 
both on temperature and on carrier concentration. In arbitrary range of electron gas degeneracy 
using quantum statistics the ambipolar diffusion coefficient is determined [28]  

( ) ( ) ( )
( ) ( )
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( )
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1 2 1 2
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, ,
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, ,
e he hB
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,  (15) 

where µ(T,N) is total mobility (14), F1/2(ηc), F-1/2(ηc) (c=e,h) are Fermi-Dirac integrals of 
orders j=1/2 and j=-1/2. Approximating functions for Fermi-Dirac integrals from [15, 16] 
were used in the simulation. It is seen that Da(T,N) depends on carrier concentration and 
temperature, electron μe(T,N) and hole μh(T,N) mobilities, degeneracy of electron gas. 
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Figure 5. Temperature dependence of ambipolar diffusion coefficient Da(T,N) (solid line) calculated 
with quantum statistics. Black markers denote reference data [25], blue - experimental [27].  

Figure 5 shows temperature dependence of coefficient Da(T,N) calculated from equation 
(15). Comparison of calculated data with experimental data in the temperature range 
300K÷600K [25, 27] and reference value at a temperature of 300K showed good agreement up 
to the temperature T=500K. In the region of higher temperatures T>600K the comparison was 
not carried out because of the lack of experimental data. 

2.3 Electrical conductivity 
In calculating the temperature dependence of specific electrical conductivity taking into 

account the degeneracy of electron gas we also used quantum statistics (Fermi-Dirac 
integrals). Electron and hole electrical conductivities are determined [10-12] 

( ) ( ) ( ), , , ,c c cT N qN T T N c e hσ μ= =     (16) 

where µc is carrier mobility (13). 

 
Figure 6. Temperature dependences of electrical conductivity of electrons (1), holes (2) calculated with 
quantum statistics. Experimental data are marked with black markers [7],  red marker is reference value [25].  
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Figure 6 shows electron and hole electrical conductivities of silicon calculated using 
quantum statistics, experimental data and reference values are indicated by markers [7, 25]. 

Concentration of charge carriers Ne(T) and Nh(T) makes the main contribution to 
temperature dependence of electrical conductivity of semiconductors. Therefore, temperature 
way of electrical conductivity in basic features repeats temperature dependence of 
concentration of charge carriers (Fig. 3) and qualitatively coincides with experimental 
dependence (Fig. 6).  

4 CONCLUSION 
The properties of electron subsystem of silicon are calculated in the framework of 

continuum approach using quantum statistics and Fermi-Dirac integrals in an arbitrary range 
of electron gas degeneracy with temperature change from 300K to 2000K. Such 
characteristics of electron subsystem of silicon with intrinsic conductivity as carrier 
concentration and mobility, coefficient of ambipolar diffusion, electrical conductivity are 
calculated. When modeling the properties of electron subsystem, the influence of narrowing 
of band gap under conditions of sufficiently strong heating of intrinsic semiconductor and 
carrier degeneracy is taken into account. The results of calculations are compared with the 
results of experiments. A comparison of calculated data with experimental ones showed 
acceptable quantitative agreement between band gap, electron and hole mobilities and 
ambipolar diffusion coefficient and qualitative coincidence of electrical conductivity. 
Numerical and graphical information on the properties obtained and comparison results with 
experimental data are presented. 
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