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Abstract—We have obtained continuous analytical expressions approximating the Fermi-Dirac (F-D)
integrals of orders j = −1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 in a convenient form for calculation with
reasonable accuracy (1–4)% in a wide degeneration range in this paper. An approach based on the
least squares method for approximation was used. The demands for the approximation of integrals, the
range of variation of order j, and the definitional domain are considered in terms of the use of F-D
integrals to determine the properties of metals and semiconductors.
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1. INTRODUCTION
The Fermi-Dirac (F-D) integrals are widely used in the field of statistical physics [1]. Their application

is also widely known in condensed matter physics [2], in particular, in the simulation of properties and
processes in semiconductors and metals [3]. F-D integrals started being used in the 1920s in classic articles
by Pauli [4] and Sommerfeld [5], in which, for the first time, a family of functions called F-D integrals
was used to describe the degenerate electron gas of metals. Methods of calculating F-D integrals of various
orders and their use remains relevant and widely used today.

An F-D integral is defined [4] as

(1)

where j is the order (index) of the integral,  is the reduced electron energy (the dis-
tance to the bottom of the conduction band),  is the reduced Fermi level for elec-
trons, and EC is the energy level of the bottom of the conduction band.

In computational practice a different form of the F-D integral is used [6, 7]:

(2)

where Γ(x) is the gamma function. Integral (2) has a number of advantages over integral (1), [6, 7]:
1. Functions  exist for negative integer orders in contrast to Fj.
2. Simplified search for integral values with half-integer orders j, and also interpolation of arguments

η using . The relationship between a function and its derivative is also simplified; thus, it is easier to
interpolate by Taylor series

(3)

1 The article was translated by the authors.
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3. In the nondegenerate limits η  0, all members of the family  reduced to  inde-
pendent of order j.

For physical applications, the important F-D integrals with integer and half-integer subscripts are usu-
ally not high:  and  [8]. Integral (2), with the exception of the integral with order

, cannot be calculated analytically. A variety of methods for approximate calculation and approxi-
mation of Fermi integrals [7], including the following methods, are connected with this: expansion in
series [9–11], numerical quadrature [12, 13], recurrence relations and interpolation of table values [8, 14–
17], and piecewise polynomial and rational functions [18, 19].

Methods for the numerical solution of F-D integrals with the further tabulation of results for orders
j = –1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 in the range of changes of η, covering the area of the nondegen-
eracy and degeneracy of the electron gas, have been presented in [6, 14, 15]. However, in the problems of
mathematical modeling, tabular representation of F-D integrals is difficult to use. It is desirable to have
some efficient algorithm for computing the integrals based on the use of relatively simple approximation
functions.

Taking into account that it is required to approximate the function on an infinite interval −∞ < η <
+∞, it is difficult to specify such an approximating function which could comply with both the require-
ments for asymptotic behavior. As a result, the original interval −∞ < η < +∞ has to broken into at least
two parts and in the best options for each part have to be selected. Therefore, for the construction of
acceptable approximation formulas in the defined range split into several intervals, in order to achieve the
required accuracy, the number of terms (usually not exceeding 10) have to be varied in each interval.

Almost all the proposed approximations to date [9, 10, 18, 19] were a set of formulas, each of which
was used in its range of values of η. Such approximations were piecewise smooth and even piecewise con-
tinuous. It was not possible to select a uniform class of approximating formulas because the qualitative
behavior of the F-D function for different values of η varies greatly. The aim of this work is to obtain, in a
form suitable for the calculation, continuous analytical expressions approximating the F-D integrals of
orders j = –1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 with reasonable accuracy over a wide range of degeneracy.
The requirements for the approximation of the integrals, and the range of variation of order j and the
reduced Fermi level η are considered in terms of the use of F-D integrals to determine the properties of
metals and semiconductors.

2. PROBLEM STATEMENT AND ALGORITHM OF THE SOLUTION

The approach used to obtain continuous analytical expressions for the approximation of F-D integrals
consists of two stages.

In the first stage, all integrals  with indices j = –1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2 were solved
numerically using the technique described in [9, 14, 15], with step Δη. The results are presented in tabular
form:

(4)

for all j. Due to their cumbersomeness, the tabular values of the F-D integrals are omitted. Values close to
the used discrete values of the integrals can be found in [14, 15].

At the second stage, we used the least squares method, which based on the table values, allowed us to
formulate analytical expressions for the approximation of F-D integrals. The least squares method
includes a sequence of the following operations: definition of the range of degeneracy parameter η, the
choice of the approximating function, and the choice of approximation criterion. The range of degeneracy
parameter η, in general, should vary from nondegenerate values to strong degeneracy −∞ < η <+∞.
However, to solve specific problems, we do not require an infinite interval; moreover, each specific state-
ment is characterized by its own limitations [9–12, 18, 19]. For determining acceptably accurately the
thermophysical characteristics of the metals and semiconductors, η is limited to −10 ≤ η ≤ 10.

For the approximating functions, the following requirements were observed: correct asymptotic behav-
ior in the range of approximation; minimal error between the original and approximating functions.

In accordance with the classical concepts [4], function (5) is close to the original function in terms of
asymptotic behavior.

(5)
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where

(6)

is an algebraic polynomial of degree m, where a0, a1, …, am are unknown coefficients to be determined,
and j = –1/2, 1/2, 1, 3/2, 2, 5/2, and 3 7/2 is the order of the F-D integral.

As a criterion allowing us to obtain the best approximation of the function Pj, m(x) given in tabular form
by its approximate values, in accordance with [20, 21], the criterion of the least squares method was used.

Using Tables (4), we represent the function ln( (x)) for each order j in tabular form, with x =
 −10 ≤  ≤ 10
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a5 1.78158795239303 × 10−5 4.25600395211334 × 10−5 3.494589935874 × 10−5
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a7 −7.70854081325175 × 10−8 −1.7735539872507 × 10−7 −1.46571706647 × 10−7

3/2 2 5/2

a0 −0.1486593579599 −0.105264307459 −0.0768619544439613
a1 0.8719917921548592 0.9036830992850 0.919228896777874
a2 −3.77026823061 × 10−2 −3.12387208 × 10−2 −0.0250502936462509
a3 −3.43676637225 × 10−3 −3.34505872 × 10−3 −2.3148638563603 × 10−3

a4 1.956898356657 × 10−4 1.235519859 × 10−4 4.63301130675965 × 10−5

a5 3.427979450715 × 10−5 3.199669205 × 10−5 1.02281466571666 × 10−5

a6 −7.40518675978 × 10−7 −4.05448029 × 10−7

a7 −1.41636342802 × 10−7 −1.29768277 × 10−7

3 7/2

a0 −0.050898937014924 −0.034692642459137
a1 0.947159393500044 0.961597271258725
a2 −2.08140384458 × 10−2 −1.669792028063 × 10−2

a3 −2.89194285420 × 10−3 −2.593622326081 × 10−3

a4 1.812925912814 × 10−5 −1.80158070437 × 10−5

a5 2.471580355196 × 10−5 2.05290664912 × 10−5

a6 6.265497388018 × 10−8 2.11752277872 × 10−7

a7 −9.50514690624 × 10−8 −7.59153817940 × 10−8

0

( ) ( ) exp
m

i
j j i

i j

x f x a x
=

⎡ ⎛ ⎞⎤
≈ = ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

∑^



386

MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 9  No. 3  2017

KOROLEVA et al.

According to the criterion of the least squares method, it is required to find a polynomial Pj, m(x) of
degree m < n such that the value of the mean-square deviation Pj, m( ) from the function values yj, 0, yj, 1,
…, yj, n are minimal:

(7)

The function that approximates integral (2) of order j, according to (5) and (6) has the form

(8)

The error estimation of function (8) can be computed using the mean-square deviation from the values in
Table (4):

(9)

Moreover, the following estimates were also used [20]:
⎯relative error

(10)

⎯the maximum relative error on the interval η,

(11)

If the required relative error in some area of η is not reached: , the integral was cal-
culated with a significantly smaller step. Then the construction procedure of the approximating function
was repeated.

3. APPROXIMATION RESULTS
Using algorithm (4)–(11), we approximated the F-D integrals of orders j = –1/2, 1/2, 1, 3/2, 2, 5/2,

3, and 7/2 by individual expressions for each order in the range −10 ≤ η ≤ 10. The exponential approxi-
mations of the integral were made with factors Pj, m(x) for m = 4, 5, 6, 7, 8, 9:

(12)

The polynomial coefficients ai (i = 0, …, m) in the exponents of approximating functions (12) are
shown in the table.

In the graphical display, the approximating functions of F-D integrals for integer and half-integer
orders are shown in Figs. 1 and 2, respectively.

Taking into account the approximation error of the F-D integrals within 4%, the exponent factor
Pj, m(x) has eight terms (m = 7) for the orders j = –1/2, 1/2, 1, 3/2, 2, 3, and 7/2. For the order j = 5/2, it
has six terms (m = 5). Increasing the degree m of the polynomial helps reduce the approximation error,
but increases the volume of computation, respectively. Figures 3 and 4 show the errors (10) for integer and
half-integer orders.

η,

( ) ( )( )2
,

0

1, min .
1

n

j m j m

j

P y P y
n

=

⎡ ⎤
⎢ ⎥ρ = η − →

+⎢ ⎥⎣ ⎦
∑ , ,

,

( ),

0

( ) ( ) exp ( ) exp .
m

i
j j j m i

i j

x f x P x a x
=

⎡ ⎛ ⎞⎤
≈ = = ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

∑^

( ) ( )( ) ( )2 2
,,

0 0

1 1, exp( ( ) ( ) .
1 1

n n

j j j j j m jjf f P
n n

= =

Φ ϕ = η − ϕ = η − η
+ +∑ ∑, , , ,

, ,

^

( ) ( ),( ) ( ) exp ( ) ( )
( ) , 0, , ,

( ) ( )
j j m

j
j

f P
f n

η − η η − η
δ η = = =

η η
…

j j

j

, , , ,

, ,

, ,

^ ^
,

^ ^

( ),
max

( ) ( ) exp ( ) ( )
( ) max max .

( ) ( )
j j m

j
f P

f
η − η η − η

δ = =
η η

j j

j j

, , , ,

, ,

^ ^

^ ^

( ) ( )( ) 1 4 %jfδ η ≥ −, ,

( ),

0

( ) ( ) exp ( ) exp .
m

i
j j j m i

i j

x f x P x a x
=

⎡ ⎛ ⎞⎤
≈ = = ⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎝ ⎠⎦

∑^



MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 9  No. 3  2017

ANALYTICAL APPROXIMATION OF THE FERMI-DIRAC INTEGRALS 387

Figure 3 shows that the level of approximation error of integrals of orders j = 2, 3 does not exceed one-
half percent (δmax( fj) ≤ 1.5%) within the approximation interval −10 ≤ η ≤ 10. The integrals of these orders
are approximated by analytical expressions with polynomials of degree m = 7 in the exponent. For the
integral of order j = 1 to achieve such a level of approximation error, the degree of the exponent needs to
be increased to m = 8. Approximation by exponent with a polynomial of degree m = 7 for the integral of
this order has error δmax( fj) ≤ 3%.

Figure 4 shows the approximation error of the F-D integrals of half-integer orders. The approximating
function (exponent degree m = 7) of the integral of order j = –1/2 has the greatest error within the approx-
imation interval (δmax( fj) ≈ 4%). At the end of the approximation interval, at η ≈ 10 the approximation
error increases to 4.5%. For the rest of the half-integer orders, the approximation error does not exceed
δmax( fj) ≤ 3% (j = 1/2, 3/2, 5/2, 7/2).

Both for the integer and for the half-integer orders (Figs. 3, 4), the level of relative error not exceeding
4% is retained only within the approximation interval; beyond the interval the error begins to increase
sharply; thus, extrapolation using the obtained approximating functions leads to large errors [21]. If we are
required to approximate integrals in a wider range of variation of the argument, it is necessary to use the
outlined approximating approach in a modified range.

Fig. 1. Approximating functions of F-D integrals of integer orders.
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Fig. 2. Approximating functions of F-D integrals of half-integer orders.
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4. CONCLUSIONS

In this paper, continuous analytical expressions specific for each order in a wide range of degeneracy
−10 ≤ η ≤ 10 have been obtained for F-D integrals of orders j = –1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2. The
approach based on the least squares method was used for approximation. The approximating functions
have the correct asymptotic behavior in the approximation range, the approximation error within which
does not exceed (1–4)%. The exponential form of representation of approximating functions with alge-
braic polynomial in the exponent allows us to find a reasonable compromise between the approximation
accuracy and computational simplicity. Increasing the terms in the exponent allows us to reduce the error,
as shown in the table. Continuous analytical expressions that are specific for the entire domain of defini-
tion simplify the calculation of the properties of metals and semiconductors, and its further use in math-
ematical models.
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Fig. 4. Relative error in range of δ(fj( )) of approximating functions (half-integer orders).
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