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Abstract—The work is devoted to the study (on the example of gold) of the properties of metals near
the critical point. Long-term studies testify to the complexity of the problem and its importance both
for constructing theoretical ideas about the behavior of metastable states of a highly superheated liquid
phase of metals and for developing a number of technological applications in the field of materials sci-
ence, the impact of concentrated energy f lows on a substance, etc. Metastable states of a superheated
liquid and a saturated vapor in the vicinity of the critical point have not been sufficiently studied. When
approaching the critical point, the properties of matter change dramatically due to strong stochastic
fluctuations of parameters (primarily density). Molecular dynamics (MD) methods are a relevant tool
for determining critical parameters. For gold, they were used to obtain a liquid–vapor coexistence
curve, from which the critical parameters were then determined: temperature, density, and pressure.
In the calculations, the potential of the family of “embedded atom method” (EAM) was used as the
interaction potential of particles. The value of the critical temperature Tcr was determined from the
results of MD simulation using the method of the maximum size of the averaged cluster on the tem-
perature curve passing through the critical region. The value of the critical pressure Pcr was obtained
from the results of MD simulation from the temperature dependence of the saturated vapor pressure
Psat(T). The value of the critical density ρcr was obtained from the results of MD simulation of the liq-
uid–vapor coexistence curve using the empirical rule of the rectilinear diameter. The simulation
results of this work are compared with the results of estimation of the critical parameters of gold by
other authors using different approaches.
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1. INTRODUCTION
Determining the parameters of the critical points of the liquid–vapor phase transition in metals is

important both from a theoretical and practical point of view. Of special importance are the critical
parameters of transition metals, including gold, which are the most widely used for the development of
promising structural materials and alloys [1]. However, the study of the thermodynamic properties of sub-
stances near their critical points is a difficult task. This is explained by many factors, including the variety
of states of matter, characterized by a high energy density. Examples of such states are: hot compressed
matter, strongly bound plasma, hot expanded liquid and quasi-ideal plasma. The knowledge of these con-
ditions is limited. The complexity of physical processes causes difficulties in theoretical modeling, and the
characteristics of these states at critical points are too high for accurate experimental measurements. Only
the low-temperature branches of the binodal can be extracted from the measurements. In addition, when
approaching the critical point, the properties of matter change, which is associated with the emergence of
new phenomena and mechanisms of interaction between the particles of matter, such as f luctuations in
the parameters of matter (primarily density), the values of which increase very rapidly when approaching
the critical point. In such a situation, consideration of the critical state on the basis of a theoretical
approach using thermodynamic functions is applicable only in the region where the f luctuations are rel-
atively small [2].

Due to the complexity of conducting experiments at high temperatures, the critical point parameters
were obtained only for a small number of substances, including alkali metals and mercury, which have rel-
atively low temperature characteristics [3–6]. For most metals in static experiments, the critical region is
unattainable due to the high critical temperature (≈10.0 kK). To overcome these limitations, experimental
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methods have been developed for dynamic pulsed heating of submillisecond duration [7–11]. For transi-
tion metals, there are known data on fast pulsed heating of wires in water and inert gases under pressure,
obtained by different authors in [7, 8]. In these studies, the measurements of enthalpy, density, tempera-
ture, and electrical resistance were carried out in the temperature range from the melting point Tm to the
temperatures of 5.0–7.0 kK. In papers [9–11], which were carried out according to the same technique,
the authors managed to experimentally estimate the parameters of the critical points of a number of met-
als, including gold. Despite significant advances in the experimental technology, the determination of the
critical parameters for the most of liquid metals is still not available. For many materials, there are only
theoretical estimates within the framework of various models, among which phenomenological methods
[12–20] and atomistic modeling methods [21–29] stand out. There are widely used empirical relations
that connect the parameters of the critical point with various characteristics of a substance in the liquid
and gaseous states. These include the principle of corresponding states based on the similarity laws [12],
characteristic lines (for example, the Zeno unit compressibility line) that have gained wide popularity [15,
16, 30], the rectilinear diameter method [2], the critical temperature estimates by extrapolation of the
experimentally found dependence of surface tension σ = f(T) [17, 18], the estimates of critical parameters
based on the relationship of metal vapors with the ionization potential of atoms [13], among these rela-
tionships there is also the Kopp–Lang rule [14], relating the critical temperature to the evaporation
energy. In [19], a method was proposed for calculating the parameters of the critical points and the
binodal of the vapor–liquid phase transition. The model is based on the assumption that cohesion, which
determines the main characteristics of metals under the normal conditions, is also responsible for the
properties of metals in the vicinity of the critical point. The estimates obtained from semi-empirical equa-
tions of state are also widely used [30–33]. In [34], the critical temperatures Tcr for 36 liquid metals were
estimated from experimental sound velocities using the isochoric thermal pressure coefficient method.

An important tool for the modeling of the properties of substances and of the physical processes that
are inaccessible for direct measurement is mathematical modeling based on atomistic models. The atom-
istic approach is represented by Monte Carlo [20, 27–29] and molecular dynamics [21–26] methods.
Within the framework of the Monte Carlo method, the Wang–Landau (EWL) approach is used to deter-
mine the critical parameters of metals and nonmetallic substances [27].

Mathematical modeling based on the method of molecular dynamics, over the past two decades, has
become a powerful tool for fundamental research of the properties [23, 25–29] and processes [21, 22, 24,
28, 29] in the materials at high temperatures. Molecular dynamics modeling makes it possible to deter-
mine the parameters of the phase equilibrium line of the liquid and gas phases and, with their help, to
study the near-critical region, where experimental studies are associated with great difficulties. The line
of coexistence of liquid and gas phases is of particular interest due to the fact that the boundary curve
(binodal) separates homogeneous states of matter from two-phase metastable states. Metastable states of
the superheated liquid phase of metals have been relatively little studied [35]. Meanwhile, the solution of
many practical problems requires knowledge of the properties of superheated liquid and saturated vapor
[36]. In particular, the properties of superheated liquid significantly affect the nature of its boiling, and
the properties of supersaturated vapor determine the condensation process [37]. At the critical point,
unlike other points of the binodal, the properties of both phases (liquid, vapor) are identical, that is, the
critical state is the same limiting physical state for both phases.

Despite the complexity of theoretical and experimental approaches, there is still interest in research in
this area.

The purpose of this work is to obtain, using molecular dynamics modeling, the liquid–vapor coexis-
tence curve for gold and to determine the corresponding critical parameters: temperature Tcr, density ρcr,
and pressure Pcr. For an approximate description of the energy of interaction between particles, the poten-
tial of an embedded atom method (EAM) [26] was used. Previously, this potential was used by the authors
to determine the thermophysical and mechanical properties of gold in the region of the melting–crystal-
lization phase transition [38].

2. MATHEMATICAL FORMULATION OF THE PROBLEM

The method of molecular dynamics is based on the representation of the object under consideration in
the form of a set of particles for which the Newton’s equations are written. For each particle, the mass mi,
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the velocity vi, and the position vector ri are considered. Thus, a system of 2N ordinary differential equa-
tions (ODEs) is obtained:

(1)

where  is the force of the interaction between the particles,  is the force of the
interaction with the external fields,  is the potential energy of the interaction of N particles.

Initial and boundary conditions. At the initial moment of time, the object under consideration is a crys-
tal at a temperature T, the particles are located at the nodes of the crystal lattice. The particle velocities at
the initial moment are given as random variables corresponding to the Maxwell distribution at the doubled
temperature 2T.

Periodic conditions are used as boundary conditions. Under periodic boundary conditions along the x
axis, it is considered that the particle that has exited through the right boundary is replaced by a particle
with the same velocity but entered through the left boundary.

In what follows, the system of ODEs (1) is solved using the Verlet finite-difference scheme in the
velocity form [39].

Particles interaction potential. The accuracy of the results of molecular dynamics simulation signifi-
cantly depends on the particle interaction potential used. To determine the branches of the liquid–vapor
coexistence curve and the critical parameters of gold, in this work, we used a potential from the EAM fam-
ily developed for gold and tested in [26]. The results of the testing of the potential on gold showed its reli-
ability and good agreement with the experimental data.

Calculation of macroscopic quantities. In the course of molecular dynamics modeling of a condensed
medium, a local thermodynamic equilibrium is established fairly quickly. Based on this, the main ther-
modynamic quantities can be determined: pressure (stresses in the crystal) and temperature.

Temperature. As it is known [40], the temperature of the translational degree of freedom α = x, y, z can
be obtained by averaging the chaotic component of the kinetic energy over an ensemble of particles with
a steady equilibrium distribution:

(2)

Here,  is the translational velocity of the center of mass of the ensemble, kB is the Boltzmann’s con-
stant. The angle brackets  imply additional time averaging to reduce f luctuations in the resulting value.
Obviously, the averaging interval must be much less than the characteristic time of the processes studied
by modeling. The overall temperature is simply defined as the average over the degrees of freedom:

(3)

Pressure. The pressure tensor is calculated by averaging over volume and additionally over time [40]:

(4)

Here, VN is the volume occupied by the ensemble,  is the total force acting on the particle

k from the other particles, αkj = (αj − αk) is the α-component of the vector . The diagonal
tensor elements Pαα are the stresses in three spatial directions. In the case of isotropic media (liquids,
gases), the pressure can be obtained by simply averaging these components:

(5)
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3. COMPUTATIONAL ALGORITHM

The basis of the computational algorithm for determining the critical parameters of gold, temperature
Tcr, density ρcr, and pressure Pcr is the methods of numerical study of the behavior of a two-phase system:
liquid (liquid fraction of Au) and saturated vapor.

The computational domain was chosen in the form of a parallelepiped 64 nm in size along the x axis,
in which the sample atoms occupy 32 nm. Gold has a face-centered cubic lattice with a lattice constant
α = 0.406 nm, which determines the number of particles equal to 63750 in the selected area. Periodic
boundary conditions are set along all three axes. The computational domain is partially filled with a model
liquid at a temperature known to be lower than the critical one. Particular attention was paid to the choice
of the area size. Preliminary calculations were carried out, from which the dimensions of the region were
determined in such a way that the liquid–vapor boundary did not disappear as a result of evaporation
before the critical temperature was reached. And vice versa, so that the entire area is not prematurely filled
with an expanding liquid.

The computational algorithm for obtaining the curve of coexistence of liquid–vapor and critical
parameters includes two stages. The first stage is preliminary, it is necessary to prepare the computational
domain for performing computational experiments. The second stage is the direct execution of computa-
tional experiments. To perform the first and second stages, Berendsen’s thermostat and barostat are used
[41, 42].

At the second stage, the calculations are organized according to the cyclic principle. Each cycle i
(i = 1, 2, …, n) combines heating the sample to the set temperature Ti = Ti − 1 + ΔTi − 1, establishing equi-
librium between liquid and saturated vapor in the sample at temperature Ti, obtaining the value of satu-
rated vapor pressure Psat(Ti) and density ρ(Ti), refinement of liquid and gold vapor densities to form
binodal branches, and selection of the heating parameters – temperature step ΔTi and heating duration—
for the next cycle of operations. The heating step ΔTi for each subsequent cycle decreased successively in
the range (0.40–0.10) kK. The heating time in this case successively increased from 150 ps to 1.5 ns. Heat-
ing continued up to the temperature T ≈ 10.0 kK.

Averaging of MD calculations results. In each sample heating cycle, according to the results of MD sim-
ulation, the saturated vapor pressure and density were averaged over time and space. The binodal branches
and the temperature dependence of the saturated vapor pressure Psat(T) were formed from the averaged val-
ues. Each value of the dependence of the saturated vapor pressure was formed in accordance with (4), (5).

The density values were averaged as follows. Figures 1a and 1b show the spatial distributions of gold
density at two temperatures T = 6.50 kK (Fig. 1a) and T = 7.05 kK (Fig. 1b), averaged over time. It can be
seen that on the curve (Fig. 1a) for the temperature T = 6.55 kK, two spatial ranges x1 ∈ (−25, −15) nm
and x2 ∈ (−10, 20) nm are clearly distinguished, in which oscillations are around two different density val-
ues. In each of these ranges, the density was averaged over space. In the first x1 range, the average (mid)
density ρmid, 1 ≈ 1.323 g/cm3 was obtained, and in the second x2 range, ρmid, 2 ≈ 6.125 g/cm3. Both density
values correspond to the same temperature T = 6.50 kK.

The first value belongs to the vapor, and the second, to the liquid branch of the binodal at a tempera-
ture T = 6.50 kK. We get two coexisting phases – vapor and liquid with different densities, while the tem-
perature and pressure of the two phases remain identical.

Figure 1b shows the curve corresponding to the density of gold at T = 7.05 kK. On this curve, it is dif-
ficult to single out the spatial ranges corresponding to a particular phase. Density f luctuations occur
around one average value ρmid ≈ 3.8 g/cm3, that is, the density of liquid and gold vapor is approximately
the same in this region, and the temperature is close to critical. The branches of the liquid–vapor phase
equilibrium curve obtained by such averaging were plotted on the ρ – T plane. Thus, the initial sections
of the branches of the gold phase diagram were obtained up to a temperature of 6.50 kK (see Fig. 4). After
reaching this temperature, the value of the critical density was refined as the average density of the vapor
and liquid branches of the binodal. This was followed by a restructuring of the computational domain with
a new refined density. The calculation of the density and pressure of saturated vapor continued with a
rebuilt computational domain at a temperature of T > 6.50 kK. Such refinement is necessary to ensure
that the computational domain is not filled with liquid or vapor before the critical temperature is reached.
Heating is repeated up to a temperature at which density f luctuations do not allow one to separate the den-
sity of the liquid and vapor branches. In our calculation, the last temperature value at which the densities
of the liquid and vapor branches of the binodal are identified is T = 6.85 kK.
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 14  No. 5  2022
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Fig. 1. Spatial distribution of gold density averaged over time: (a) at T = 6.50 kK and (b) at T = 7.05 kK. 
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4. CRITICAL TEMPERATURE Tcr AND CRITICAL PRESSURE Pcr

On the phase diagram, the position of the critical point of the liquid–vapor transition is one of the fun-
damental parameters. To obtain the value of Tcr, the method of the maximum size of the averaged cluster
on the temperature curve passing through the critical region was used [23, 43].

The essence of the method is as follows. In the subcritical region, with increasing temperature, the
density and pressure of saturated vapor increase. In the near-critical region, atomic vapor particles begin
MATHEMATICAL MODELS AND COMPUTER SIMULATIONS  Vol. 14  No. 5  2022
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Fig. 4. Binodal of gold. 

Density, g/cm3

6

8

10

12 Vapor

Liquid

4

2

0

5.0 5.5 6.0 6.5 7.0

T, kK

Tcr

�cr
to combine into clusters, which reach their maximum size just at the critical point. With a further increase
in temperature, the density no longer increases. In this case, due to the increase in the kinetic energy of
chaotic motion, the fragmentation of clusters into smaller ones begins. Thus, the average cluster size must
have a singularity at the critical point. This fact is used in this method to determine the critical tempera-
ture. The average number of atomic particles characterizing the sizes of averaged clusters can be estimated
by the formula:

(6)

where Psat(T) is the pressure of the saturated vapor at this temperature T (Fig. 3), n(T) is the concentration

of atomic particles in saturated vapor, kB is the Boltzmann constant.

The temperature dependence of the size of the averaged clusters, shown in Fig. 2, has a pronounced
maximum, indicating a change in the mechanism of formation of saturated vapor and further identified
with the value of the critical temperature. According to Fig. 2, the value of the critical temperature of gold
is Tcr ≈ 7.0 kK. For the first time, this method for determining the critical temperature was proposed in

[23, 43] and was called the method of the maximum size of the averaged cluster on the temperature curve
passing through the critical region.

The saturated vapor pressure was determined in each heating cycle of the calculation area in accor-
dance with (4) and (5). After averaging over time and space, the saturated vapor pressure curve Psat(T) was

plotted (Fig. 3).

Analyzing the dependence of saturated vapor pressure on temperature, one can determine the critical
pressure (at a known critical temperature Tcr ≈ 7.0 kK). The specific value of the critical pressure is deter-

mined from the intersection of the saturated vapor curve and the vertical straight line corresponding to the
critical temperature (Fig. 3) Psat(Tcr) = Pcr ≈ 0.134 GPa.

It should be noted that when passing through the critical point, the behavior of the temperature depen-
dence of the saturated vapor Psat(T) changes. A highly imperfect saturated vapor, described by an exponent

in the subcritical region, transforms into an ideal one with a linear dependence in the supercritical region
(Fig. 3).

5. LIQUID–VAPOR COEXISTENCE CURVE AND CRITICAL DENSITY OF GOLD

The value of the critical density was determined by the empirical rule of the rectilinear diameter [2, 23]

(7)

where ρL is the density of liquid phase at the temperature T, ρsat is the density of saturated vapor in equi-

librium with liquid at the same temperature. The coefficient λ is different for different materials and is a
positive value close to 1.

The name of this rule becomes clear if we take into account that in the coordinates ρ – T, the diameter
of the curve ρ(T) is a straight line. At T ≈ Tcr, the rectilinear diameter rule has the form

(8)

= B sat( ) ( ) ( ),N T n T k T P T

ρ + ρ = ρ + λ −sat cr cr2 ( ),L T T

ρ ≈ ρ + ρcr sat( )/2.L
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Figure 4 shows the liquid–vapor coexistence curve obtained from the results of MD simulation at the
final stage of determining the value of the critical density ρcr.

The obtained branches of the binodal are not symmetric; therefore, to refine the critical density, a
modification of the rectilinear diameter rule, which has proven itself in [23], is used.

Two points are enough to draw a straight line. As the coordinate of the first point in x, the maximum
temperature T1 = 6.85 kK is chosen, which still allows determining the densities of the binodal branches.

The ordinate for this point is calculated by formula (8) for the values ρL (6.85) and ρsat (6.85).

As the coordinates of the second point of the rectilinear diameter, one can choose any of the values T <
T1 and the average value of the densities of the liquid and vapor branches of the binodal corresponding to

this temperature.

In total, 10 variants of the second point Di (i = 2, …, 11) were calculated and drawn, marked in Fig. 4

by triangular markers. Through the points D1 and Di, 10 lines of rectilinear diameter were drawn, indicated

in Fig. 4 by dotted lines, and, therefore, 10 density values ρcr, i (i = 1, …, 10) can be obtained at a tempera-

ture Tcr ≈ 7.0 kK.

The density value at a known value of T = Tcr was determined as the average

(9)

The obtained value of the critical density is ρcr ≈ 3.849 g/cm3.
Each point on the liquid–vapor curve corresponds to an equilibrium state in which 2 phases can coex-

ist. The branches of the binodal end at one point with coordinates Pcr, ρcr, Tcr. As a result of MD simula-

tion, we obtained the coordinates of the critical point Pcr ≈ 0.134 GPa, ρcr ≈ 3.849 g/cm3, Tcr ≈ 7.0 kK,

with the help of which the liquid can be continuously converted into a gas along the binodal curve without
crossing the phase transition line.

6. COMPARISON OF THE OBTAINED PARAMETERS OF THE CRITICAL POINT
OF GOLD WITH THE EXPERIMENTAL ESTIMATES AND THE ESTIMATES 

OF ALTERNATIVE STUDIES

Table 1 presents the results of the evaluation of the critical parameters of gold from this work, experi-
mental estimates [9–11] (marked with *) and works [12, 17–20, 27, 32, 34]. The values of critical param-
eters in Table 1 are shown in the order of increasing Tcr. Among them, there are estimates obtained: based

on the principle of corresponding states [12], by extrapolating the experimentally found dependence of
surface tension [17, 18], using the concept of “cohesive energy” [19], using an empirical relation that
relates the critical temperature of an element to its solid-state properties [20], as well as the estimates
obtained from semi-empirical equations of state [32] and using the isochoric coefficient method [34], as
a result of molecular modeling using a many-particle force field, known as the quantum-corrected
Sutton–Chen potential [27]. Table 1 also presents the relative deviations of the critical parameters σ
obtained in this work from alternative estimates

where N = 1, …, 11 is the ordinal number of the value of critical parameters in Table 1, Tcr, N, ρcr, N, Pcr, N
are the critical parameter of other authors, N = 12 for the present work.

As it can be seen from Table 1, the critical temperature, density, and pressure obtained in this work are
in good agreement with the results of other studies. The results of works [9–11] obtained from the exper-
iment are closest to the obtained value of Tcr, the difference is ~3–7%. The values of Tcr obtained from

alternative calculations [12, 17–20, 32] differ from our calculations by ~15–20%. The greatest difference
is observed with the results of works [27, 34]. The critical temperature estimates in these works were
obtained using the isochoric coefficient method [34] and from the results of molecular modeling using the
quantum-corrected Sutton–Chen potential [27].

The spread of deviations of the values of the critical density ρcr, as well as the values of Tcr, is small and

amounts to ~8–36%. The exception is the results of [10] (≈50%). The estimates of the critical pressure are
quite different. In addition to [9] (deviation ~3.88%), the obtained value of Pcr differs from other works by

ρ = ρcr cr, /10.i
i

ρ
− ρ − ρ −

σ = σ = σ =
ρcr cr cr

cr, cr,12 cr, cr,12 cr, cr,12

cr, cr, cr,

, , ,
N N N

T P
N N N

T T P P
T P
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Table 1. The values of critical parameters of gold

N Tcr, K , % ρcr, g/cm3 , % Pcr, GPa , % Source

1 4048 72.93 – – – – [34]

2 4286 63.32 5.96 35.42 0.0186 620.43 [27]

3 6250 12 6.1 36.90 1.290 89.61 [19]

4 6520 7.36 4.69 17.93 0.129 3.88 [9]*

5 7217 3.01 3.54 8.73 – – [11]*

6 7400 ± 1100 5.41 7.7 ± 1.7 50.01 0.530 ± 0.02 74.72 [10]*

7 7413 5.57 – – – – [17]

8 8267 15.33 5.0 23.02 0.6265 78.61 [32]

9 8700 19.54 – – – – [18]

10 8970 21.96 5.68 32.24 0.610 78.03 [12]

11 9087 22.97 – – – – [20]

12 7000 – 3.849 – 0.134 – Present work

σ
crT ρσ

cr
σ

crP
≈80%. This can be explained by the fact that pressure is the most sensitive characteristic of a substance,
reacting to any changes in the system. The results obtained are in good agreement with the experimental
results of [9, 11].

7. CONCLUSION

Based on a series of calculations performed using molecular dynamics simulation, a liquid–vapor
coexistence curve was obtained and the critical parameters of gold were determined: temperature, density,
and pressure using the particle interaction potential from the EAM family [26]. The calculations were car-
ried out using the LAMMPS package [44].

The value of the critical temperature Tcr ≈ 7.0 kK was obtained from the results of MD simulation using

the method of the maximum size of the averaged cluster on the temperature curve passing through the
critical region [23, 43].

The value of the critical pressure Pcr ≈ 0.134 GPa was obtained from the results of MD simulation from

the temperature dependence of the saturated vapor pressure Psat(T).

The determination of the critical value of density ρcr ≈ 3.849 g/cm3 (according to the results of MD

simulation) from the binodal curve due to strong density f luctuations near the critical temperature was
carried out using the empirical procedure of a rectilinear diameter [2, 23].

Comparison of the modeling results of this work with the results of estimates of the critical parameters
of gold obtained from experiments [9–11], as well as those obtained by other researchers using different
approaches [12, 17–20, 27, 32, 34], showed a fairly good agreement.
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