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Summary. The article is devoted to the problem of constructing equations of state with deep 

entry into metastable regions (overheating/undercooling) of the molten and crystalline phases 

of aluminum. For mathematical modeling of hydrodynamic processes, the knowledge of the 

equations of state is the source of the most important information about the dependence of the 

thermodynamic properties of a substance on the microscopic internal structure. Moreover, for 

modeling, the equations of state are required in the form of smooth analytical dependencies 

with the characteristics of metastable states. Molecular dynamics simulation was used as the 

main tool for obtaining the equations of state. Based on the results of molecular dynamics 

calculations, the work obtained mutually consistent single-phase equations of state for molten 

and crystalline aluminum in tabular form. For tabular values, the approximating analytical 

dependences of low degrees were obtained. The results are presented in the form of tables and 

graphs. The thermodynamic consistency of the resulting equations is investigated. The 

simulation results of this work are compared with the equations of state for aluminum 

obtained by other authors. 

 

1 INTRODUCTION 

One of the most difficult problems facing mathematical modeling of hydrodynamic 

processes is the correct estimation and choosing of the equation of state (EOS). The 

knowledge of the EOS of a substance is important for its information content about the 

dependence of the thermodynamic properties of a substance on the microscopic internal 

structure, which makes EOS an inevitable component of all hydrodynamic models. Currently, 

there is no unified approach to creating a high-precision theory for determining the 

thermodynamic properties of matter in a fairly wide region of phase space, since the 

knowledge about these states in such a wide range is always limited. The necessary 

information can be obtained in two ways: using theoretical modeling [1-5] or using complex 

experiments [6-8]. However, obtaining a high-precision distribution of thermodynamic 

parameters using mathematical modeling is limited by the range of applicability of the models 

used, and the experimental studies are hampered by the complexity of their implementation. 

In recent years, more and more attention has been paid to the states of matter with high and 

ultra-high energy densities, which are responsible for achieving high pressures and 

temperatures. Contemporary interest in extreme states of matter is driven by the rapid growth 

of scientific and technological applications related to the physics of extreme states. Extreme 
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states arise when a substance is exposed to intense shock [9], detonation [10], 

electroexplosive waves [11], intense electron-ion beams [12], concentrated streams of laser 

radiation [13, 14], etc. 

An unsteady hydrodynamic process is characterized by a change in four macroscopic 

variables: velocity, density, pressure and internal energy of the material. These four 

parameters are described by the hydrodynamic equations based on the laws of conservation of 

mass, momentum and energy, as well as by the equation of state (EOS), which formally 

relates pressure, density and energy. 

The construction of the EOS, consisting of experimental measurements and theoretical 

calculations of pressure-volume-temperature (P, V, T), plays a huge role, which stimulates 

intensive research into the properties of materials in both fundamental and applied fields of 

science. Thus, fundamental studies of plasma physics using intense beams of heavy ions and 

lasers [15,16] have shown that ion beams and laser beams make it possible to concentrate 

energy in space and time in such a way that matter can be converted into plasma with a solid-

state density. As a result, the atomic and ionic states turn out to be mixed and very different 

from the original atomic states. Their characteristics can be expressed through the EOS, which 

relates pressure and temperature to the density of the sample, via the properties of electrical 

conductivity, thermal conductivity and radiative transfer. In basic sciences, EOS are often 

used to test the quality of theoretical models [17]. EOS play a major role in studies of the 

dynamics of phase transitions: solid - liquid [18], liquid - vapor [19], plasma - dielectric [20], 

etc. 

In applied sciences, the importance of EOS is determined by the need to use their initial 

data in hydrodynamic calculations in such problems as the development of processing 

technologies [21, 22], modification of structural and functional materials by ultrashort high-

power laser pulses [23] 

High energy density physics deals with the EOS of matter over a very wide range of phase 

diagrams: from a compressed solid (crystal) to dense hot liquid, vaporized and ionized matter 

(non-ideal plasma), characterized by extremely high pressure and temperature. As already 

noted, the EOS of a substance is an external equation with respect to the conservation laws 

and is constructed either from the results of experiments [24] or by methods of statistical 

physics [25]. At the same time, taking into account the size of the phase space region, a 

difficult choice arises: to use only one wide-range EOS equation over the entire range or to 

switch between different equations, depending on changes in thermophysical parameters. For 

numerical modeling of processes in substances with high or ultra-high energy density, it is 

preferable to use wide-range EOS equations [26, 27], the development of which faces a 

number of difficulties. The main difficulty in the consistent theoretical calculation of the EOS 

of a substance using statistical physics methods is the need to correctly take into account the 

complex structure of interparticle interactions in the quantum mechanical many-body problem 

for any values of the coupling constant and any type of statistics [5]. Due to the limited scope 

of application of each of the methods used, none of them can provide a complete theoretical 

representation of the thermodynamic properties of a substance over the entire phase plane 

from a cold crystal to liquid and hot plasma [18, 28]. Therefore, when constructing wide-

range EOS, it is necessary to use simplified models, the scope of which is limited and is 

established individually in each specific case, either using the internal characteristics of the 

model, or through comparison with exact solutions, if they exist, or comparison with 

experimental results. The most widely used data are experimental measurements, which are 
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used to choose the numerical parameters in the functional dependencies constructed on the 

basis of exact solutions or simplified models. The semi-empirical models obtained in this way 

are used to describe and formulate adequate zero-approximation models in particularly 

complex situations (liquids, solids, dense plasma). The success of constructing semi-empirical 

EOS models is verified both by the quality of the heterogeneous experimental data used and 

by the possibility of using extrapolation calculations. 

The information obtained in dynamic experiments [29] significantly expands the basic 

understanding of the physical properties of matter in a wide region of the phase diagram up to 

ultra-high pressures and temperatures. Currently, shock wave methods provide the most 

important practical information for creating a wide range of EOS [30]. The most powerful 

EOS are based on sound theoretical models and describe a wide range of phase diagrams with 

high accuracy and reliability. Its high accuracy allows EOS to be used in advanced numerical 

simulations to solve numerous high-energy-density physics problems. 

One of the significant drawbacks of semi-empirical EOS is the lack of an adequate 

description of the region of metastable states in phase transformations, despite the correct 

description of the melting/crystallization and evaporation/condensation phase boundaries [26]. 

However, strongly overheated or undercooled metastable states can have a significant 

impact on the dynamics and nature of phase transformations. In oder to simulate these 

features one neeeds an EOS containing a description of these metastable states. 

The purpose of this work is to construct mutually consistent single-phase equations of state 

(thermal, caloric) with deep penetration into the metastable regions 

(overheating/undercooling) of the molten and crystalline phases of aluminum. 

2 STATEMENT OF THE PROBLEM 

In the problem of mathematical modeling of metal ablation by ultrashort high-power laser 

pulses using continuum hydrodynamic models, the choice of the equation of state plays an 

important role. The difficulties associated with the choice and construction of EOS are 

determined by the specifics of the action of femtosecond laser radiation on solid targets 

[31,32]. The hydrodynamic models used are developed on the basis of fundamental 

knowledge of the physics of nonequilibrium processes, which allows them to most fully cover 

the basic mechanisms of ablation. The main feature of femtosecond action on metals in the 

temperature range T0 ≤ T < Tcr (where T0, Tcr are the room and critical temperature 

correspondingly), consists in the occurrence of rapid phase transitions accompanied by 

metastable highly overheated/undercooled states. 

As noted above, the construction of EOS is based on the widespread use of both complex 

theoretical models [4,5,33] and extensive experimental data [34,35]. However, the 

construction of EOS for metals exposed to ultra-short ultra-high-power laser radiation faces 

great difficulties. As a result, none of the available approaches could be applied to the 

construction of EOS. The main reason is that, due to the extremely short time frame in which 

nonequilibrium processes develop, the behavior of metals is extremely difficult to study 

experimentally. Information about the mechanisms of the main processes is obtained mainly 

from theoretical calculations and predictions. 

In this situation, the most effective method for constructing EOS turned out to be 

molecular dynamics modeling, which allows one to sufficiently fully and accurately 

characterize the parameters of the metastable region. 
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Usually two types of equations of state are considered: thermal - P(ρ,T) and caloric - 

E(ρ,T). In one of them, pressure P, and in the other, respectively, internal energy E, are the 

functions of temperature T and density ρ. These EOS are presented in the form of tables, or in 

the form of analytical dependencies. The authors of this work required an EOS that would be 

applicable to the numerical solution of the previously developed continuum hydrodynamic 

model of laser heating and fragmentation of an aluminum target [36,37]. The algorithm for 

the numerical solution of this model is based on the dynamic adaptation method [38, 39], 

which makes it possible to perform calculations with the explicit tracking of an arbitrary 

number of phase boundaries [40, 41], contact boundaries [42], and shock wave fronts [43, 44]. 

In this case, at each of the phase boundaries, the boundary conditions are used in which 

pressure is calculated both through density and temperature, and vice versa, density is 

calculated through pressure and temperature. This requirement is met by EOS without areas 

of ambiguous correspondence between ρ and P. In other words, it is necessary that for all 

isotherms of each phase the condition that the pressure derivative with respect to density is 

not equal to zero (∂P/∂ρ ≠ 0). 

Taking into account the fact that the original hydrodynamic model is approximated by a 

family of implicit difference schemes, the numerical implementation of which is carried out 

by iterative methods, and the numerical solution of nonlinear boundary conditions in the 

finite-difference approximation is carried out by specially constructed iterative procedures, 

additional requirements are imposed on the developed EOS. It is desirable to ensure the best 

convergence of all iterative processes used and, thereby, to ensure the possibility of 

calculations with large time steps. To do this, it is necessary to have a smooth analytical 

thermal EOS, which would explicitly express pressure in terms of density and density in 

terms of pressure. As specially carried out calculations have shown, it is the smoothness of 

the thermal equation of state that has the greatest effect on the convergence of iterative 

procedures. 

3 MATHEMATICAL MODEL 

The molecular dynamics (MD) method is based on a model representation of a system of N 

point atoms, the motion of which is described in the classical case by Newton’s equations. 

Thus, there is a system of 2N equations: 
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where mi, υi, ri are mass, velocity and radius-vector of i-th atom, Fi, Fi
ext

 are the force  of 

interation with other atoms and that with the external field for the i-th atom. The semi-

empirical potential of the “embedded atom method” (EAM), presented in [45], was used as 

the potential. 

The Maxwell distribution at double the initial temperature is used as the initial conditions 

for the velocities. For the initial distribution of atomic coordinates, an ideal fcc lattice with a 
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given lattice parameter is taken. Periodic boundary conditions are specified at the boundaries 

of the region. 

To numerically solve this system of equations, we used the Verlet scheme [46], 

implemented within the open LAMMPS package [47]. 

4 COMPUTATIONAL EXPERIMENT 

4.1 Thermal equation of state P(ρ,T) 

The configuration of the atoms is chosen in the form of a cube with a size of 18×18×18 

elementary cells or 7.26×7.26×7.26 nm
3
 with the value of the lattice parameter for a given 

EAM potential of 0.4032 nm. A FCC lattice of 23328 aluminum atoms is placed in this area. 

Periodic boundary conditions are set along all three axes. The integration step is set to 1 fs. 

Initially, the atoms are located in the nodes of the FCC lattice, and the particle velocities 

are set according to the Maxwell distribution. The sample is equilibrated at a temperature of 

300 K and zero pressure using a thermostat and a Berendsen barostat. This state was used as 

the initial one for the subsequent series of measurement experiments to obtain the equation of 

state of the solid phase. 

Each experiment was performed as follows. The sample was compressed uniformly in 

three main crystallographic directions ((1,0,0), (0,1,0), (0,0,1)) up to a pressure of about 100 

GPa. At the same time, the required temperature value was set by the thermostat. Further, 

keeping the temperature constant, the pressure was lowered to the required values, and at each 

such value the sample relaxed for 100 ps. After relaxation, the average density value was 

obtained. The pressure values were lowered until melting or rupture of the sample occurred. 

Thus, a single-phase isotherm for the crystal was obtained. 

To obtain the equation of state of the liquid, the initial state was chosen by heating to a 

temperature above the melting point. At the same time, the sample was melting. After that, it 

was cooled by a thermostat to the melting point. 

Then, to determine the thermal equation of state, the sample at a fixed temperature was 

compressed by a barostat to the required pressure and held for 100 ps. In this state, the 

resulting average density was obtained. The pressure was set from -7 to 9 GPa with a step of 1 

GPa and then from 10 to 90 GPa with a step of 20 GPa. Several temperature values were 

chosen for which these dependencies were obtained: for a solid 300, 600, 900 and 1500 K, 

and for a liquid 950, 2000, 3500, 5000 and 6500 K. The results of these measurements are 

given in table. 1(a) and 2(a) of the appendix. 

Then the following function was constructed approximating these results: 
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Here the dimensions of density are g/cm
3
, pressure - GPa, temperature - K. The 

coefficients , ,  for the solid and liquid phases are given in Table. 1(b) and 2(b) of the 

appendix. The range of applicability of the obtained approximating functions is assumed to 

correspond to the extreme values of tables 1(a), 2(a). 
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Figs. 1, 2 show the obtained isotherms for the solid and liquid phases: (a) – the results of 

MD modeling (circles) and their approximation by the analytical function (solid lines). (b) – 

an enlarged fragment, black dash-dotted and solid lines – lines of equilibrium melting and 

maximum overheating/undercooling, respectively. Yellow markers indicate the metastable 

areas located between these lines. 

 

 

 

Fig.1. Isotherms for the solid phase. 
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Fig.2. Isotherms for the liquid phase. 

4.2 Caloric equation of state E(ρ,T) 

The same initial configuration of 23328 atoms was used to determine the caloric equation 

of state. The sample was heated to a predetermined temperature and left in these conditions 

for 1 ns at a constant pressure set by the barostat. Density and internal energy were recorded 

as the sum of kinetic and potential interaction energies of all particles. The results of these 

measurements are given in Tables 3(a) and 4 (a) of the appendix. 

Next, an approximating function similar to the previous paragraph was constructed: 
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Here the energy dimension is kJ/g. The values of the coefficients , ,  for the solid and 

liquid phases are given in table. 3(b) and 4(b) of the appendix. 

 

 

 

Fig.3. Energy isotherms for the solid (a) and liquid (b) phases. 
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The range of applicability of the approximating function for the solid phase corresponds to 

the extreme values of Table 3(a). 

For the liquid phase, the obtained approximation is applicable only up to a critical 

temperature of 7650K. At higher temperatures, it is proposed to use a parabolic approximation 

in density (as before) 

 )()()(),( 2 TcTbTaT  , (4) 

while for the parameters a(T), b(T), c(T) - linear interpolation between the values given in 

Table 4(b). 

In Figure 3, the circles show the results of MD experiments for the solid (a) and liquid (b) 

phases, their approximation by the proposed method. 

4.3 Thermodynamic consistency 

In the theory of thermodynamic potentials, there is a well-known relation connecting the 

temperature derivative of pressure at constant density and the derivative of internal energy 

with respect to density at constant temperature: 
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This relationship shows that thermal and caloric EOS cannot be arbitrary, but must be 

consistent with each other [25]. 

Using the approximating functions (2), (3) with the parameters of Tables 1(b), 3(b) for the 

solid phase, the left and right parts of the equation (5) were compared at zero pressure in the 

temperature range from 300 K to 1000 K. The result is shown in Figure 4(a). It can be seen 

that the degree of mismatch does not exceed 5% in this range. 
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Fig.4. Consistency (solid phase) of the thermal and caloric EOS: 

 (a) calculated  EOS, (b) EOS from Ref. [26] 

The degree of thermodynamic consistency of the obtained equations of state (3), (4) was 

verified by comparison with the data of semi-empirical aluminum EOS given in the well-

known work [26]. 

Having isolated the solid phase from these equations, we obtained a similar comparison of 

the left and right parts of the ratio (5) at zero pressure, shown in Fig. 4 (b). The degree of 

mismatch here was about 12%. 

Thus, the degree of mismatch in our case is within acceptable limits. 

 

5 CONCLUSIONS 

1. Within the framework of a unified atomistic model, single-phase calorific and thermal 

equations of aluminum state in the temperature range from room to critical (T0 ≤ T < Tcr) and 

pressure P ≤ 100 Gpa were obtained by the method of molecular dynamics. 

2. Both equations of state are constructed in a smooth analytical representation form. 

3. The thermodynamic consistency of the obtained equations is investigated, the mismatch of 

which does not exceed 5% in the region of applicability of the model. 
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APPENDIX 1. THE RESULTS OF MEASURING IN MD EXPERIMENTS AND THE 

PARAMETERS OF APPROXIMATING FUNCTIONS OF THERMAL AND 

CALORIFIC URS FOR SOLID AND LIQUID PHASES OF THE MODEL AL 

 

T=300K T=600K T=900K T=1500K 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

2.34 -7 2.28 -6 2.38 -3 2.63 5 

2.41 -6 2.36 -5 2.46 -2 2.83 10 

2.46 -5 2.43 -4 2.51 -1 3.09 20 

2.52 -4 2.49 -3 2.56 0 3.29 30 

2.56 -3 2.54 -2 2.61 1 3.47 40 

2.61 -2 2.58 -1 2.69 3 3.62 50 

2.65 -1 2.63 0 2.76 5 3.76 60 

2.68 0 2.67 1 2.82 7 3.89 70 

2.72 1 2.74 3 2.88 9 4.01 80 

2.79 3 2.8 5 2.91 10 4.12 90 

2.85 5 2.89 8 3.34 30     

2.9 7 2.95 10 3.66 50     

2.96 9 3.37 30 3.92 70     

2.98 10 3.68 50 4.15 90     

3.39 30 3.93 70         

3.69 50 4.16 90         

3.95 70             

4.17 90             

Table 1(a). Isotherms of the solid phase (results of MD modeling). 

 

 a,b,c a,b,c a,b,c 

a -6.48059E-07 0.002105144 21.27285873 

b 4.39592E-06 -0.014915725 -85.36042798 

c -7.01040E-06 0.029571398 74.42767645 

Table 2(b). Coefficients of the analytical approximating function for the thermal EOS of the 

solid phase. 
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T=950K T=2000K T=3500K T=5000K T=6500K 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

ρ,  

[g/cm
3
] 

P,  

[GPa] 

2.22 -3 1.99 -2 1.74 -1 1.6 0 1.23 0 

2.3 -2 2.09 -1 1.88 0 1.75 1 1.53 1 

2.37 -1 2.17 0 1.98 1 1.93 3 1.76 3 

2.43 0 2.24 1 2.12 3 2.06 5 1.91 5 

2.48 1 2.35 3 2.23 5 2.18 7 2.04 7 

2.58 3 2.45 5 2.33 7 2.27 9 2.14 9 

2.66 5 2.54 7 2.43 9 2.32 10 2.19 10 

2.73 7 2.62 9 2.46 10 2.92 30 2.82 30 

2.8 9 2.65 10 3.03 30 3.32 50 3.23 50 

2.83 10 3.18 30 3.41 50 3.63 70 3.55 70 

2.97 15 3.53 50 3.71 70 3.89 90 3.81 90 

    3.86 70 3.96 90         

    4.09 90             

Table 2(a). Isotherms of the liquid phase (results of MD modeling). 

 

 

 

 a,b,c a,b,c a,b,c 

a -3.71767E-08 -0.000469412 18.11139074 

b -1.86369E-07 0.007393025 -74.66818769 

c 4.58247E-07 -0.010379117 70.11789674 

Table 2(b). Coefficients of the analytical approximating function for the thermal EOS of the 

liquid phase. 
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T=300K T=400K T=500K 

ρ, [g/cm
3
] , [kJ/g] ρ, [g/cm

3
] , [kJ/g] ρ, [g/cm

3
] , [kJ/g] 

2.25271 -11.25298 2.49038 -11.50416 2.46239 -11.38212 

2.56238 -11.65675 2.62665 -11.59959 2.60668 -11.49718 

2.68478 -11.71060 2.66646 -11.61347 2.64834 -11.51484 

2.68883 -11.71143 2.66951 -11.61430 2.65242 -11.51606 

2.7331 -11.71543 2.67077 -11.61459 2.69995 -11.52712 

2.98054 -11.59526 2.71677 -11.62196 2.95764 -11.4303 

3.69429 -9.95371 2.96931 -11.51296 3.68235 -9.81008 

    3.6884 -9.88166     

T=600K T=850K T=1500K 

ρ, [g/cm
3
] , [kJ/g] ρ, [g/cm

3
] , [kJ/g] ρ, [g/cm

3
] , [kJ/g] 

2.43119 -11.25283 2.40965 -10.98655 2.63801 -10.52033 

2.48823 -11.31526 2.52629 -11.11286 2.82512 -10.55027 

2.62880 -11.41380 2.57333 -11.14800 3.08902 -10.32981 

2.63308 -11.41564 2.57958 -11.15181 3.29427 -9.97038 

2.68229 -11.43067 2.58120 -11.15291 3.62428 -9.11196 

2.94604 -11.34705 2.63519 -11.18040     

3.67651 -9.73753 2.91623 -11.13519     

    3.66132 -9.55658     

Table 3(a). Energy isotherms of the solid phase (results of MD modeling). 

 

 a,b,c a,b,c a,b,c 

a -8.35937E-08 9.63648E-05 1.898023321 

b 4.33686E-07 -0.000500128 -10.39682318 

c -5.10344E-07 0.001525898 2.25649827 

Table 3(b). Coefficients of the analytical approximating function for the caloric EOS of the 

solid phase. 
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T=1000K T=2000K T=3000K T=4000K 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

2.28487 -10.51107 2.08905 -9.4399 1.86544 -8.38343 1.72233 -7.47671 

2.35338 -10.58922 2.16958 -9.54698 1.97738 -8.56645 1.79054 -7.60137 

2.41415 -10.64688 2.17908 -9.55854 1.98455 -8.57714 1.80849 -7.633 

2.41669 -10.64916 2.26323 -9.64814 2.08802 -8.71731 1.93763 -7.84065 

2.41927 -10.65153 2.453 -9.77298 2.303 -8.90906 2.41093 -8.19419 

2.48557 -10.70028 2.65307 -9.78517 2.522 -8.96058 3.38288 -6.77325 

2.647 -10.76111 2.952 -9.56904 2.841 -8.76869     

2.82138 -10.72659 3.181 -9.21049 3.082 -8.41509     

3.085 -10.46745 3.53486 -8.31323 3.45441 -7.51078     

3.295 -10.09354             

3.626 -9.19             

T=6000K T=7650K T=8000K T=9000K 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

ρ,  

[g/cm
3
] 

,  

[kJ/g] 

1.41476 -5.63329 1.2 -4 1.38318 -4.3946 1.24702 -3.50836 

1.44015 -5.65684 1.43395 -4.70802 1.77815 -5.14191 1.69447 -4.43125 

1.65226 -6.11903 1.81063 -5.39192 2.07129 -5.40899 2.00357 -4.75185 

2.22577 -6.76324 2.09914 -5.64564 2.4576 -5.36425 2.39819 -4.73628 

3.2597 -5.40577 2.47961 -5.58607 2.73446 -5.04331 2.68073 -4.42846 

    2.755 -5.26193 3.15393 -4.13077 3.10573 -3.51387 

    3.17035 -4.35009         

Table 4(a). Energy isotherms of the liquid phase (results of MD modeling). 

 

 a,b,c a,b,c a,b,c 

a 1.14344E-08 -0.000128084 1.823425536 

b -7.75745E-08 0.00101952 -10.03976977 

c 1.02945E-07 -0.00080964 2.089811385 

Table 4(b). Coefficients of the analytical approximating function for the caloric EOS of the 

liquid phase  (upto the temperature of 7650K) 
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T,[K] a(T) b(T) c(T) 

7650 1.508325756 -6.741328093 1.860939682 

8000 1.501941928 -6.668241278 1.958913328 

9000 1.491764258 -6.50320304 2.289158456 

Table 4(c). Coefficients of the approximating parabolas over density for the caloric EOS 

of liquid (above the temeprature of 7650K) 
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